A denoising scheme for DSPI fringes based on fast bi-dimensional ensemble empirical mode decomposition and BIMF energy estimation

被引:16
|
作者
Zhou, Yi [1 ]
Li, Hongguang [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Digital speckle pattern interferometry; Speckle noise; Denoising; Fast bi-dimensional ensemble empirical; mode decomposition; BIMF energy estimation; SPECKLE-PATTERN INTERFEROMETRY; WAVELET TRANSFORM; NOISE-REDUCTION; SIGNALS; DEFORMATIONS; FILTER;
D O I
10.1016/j.ymssp.2012.09.009
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Digital speckle pattern interferometry (DSPI) is a new and efficient technique for measuring the difference in out-of-plane displacement. However, DSPI fringes contain low spatial information degraded with random speckle noise and background intensity. A denoising scheme based on fast bi-dimensional ensemble empirical mode decomposition (FBEEMD) and energy estimation of bi-dimensional intrinsic mode function (BIMF) is proposed to reduce speckle noise in this paper. Furthermore, the denoising scheme is compared with other denoising methods, and evaluated quantitatively using computer-simulated and experimental DSPI fringes. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:369 / 382
页数:14
相关论文
共 50 条
  • [21] Gradient Constrained Bi-dimensional Empirical Mode Decomposition and Its Application
    Xu, Xiaogang
    Chong, Yuan
    Jin, Xin
    Wang, Jianguo
    Xu, Guanlei
    Qin, Xujia
    2015 8TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), 2015, : 929 - 933
  • [22] Distance regularized level set evolution in magnetic resonance image segmention based on bi-dimensional ensemble empirical mode decomposition
    Fan Hong
    Wei Wen-Jin
    Zhu Yan-Chun
    ACTA PHYSICA SINICA, 2016, 65 (16)
  • [23] Denoising ECG Signal Based on Ensemble Empirical Mode Decomposition
    Zhao Zhi-dong
    Liu Juan
    Wang Sheng-tao
    INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2011), 2011, 8285
  • [24] Bi-dimensional Empirical Mode Decomposition Algorithm Based on Particle Swarm-Fractal Interpolation
    An, Feng-Ping
    He, Xin
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2018, 12 (12): : 5955 - 5977
  • [25] Denoising of Chaotic Signals Based on Ensemble Empirical Mode Decomposition
    Wang, Mengjiao
    Wu, Zhongtang
    Chen, Yue
    Feng, Jiuchao
    2014 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), 2014, : 14 - 17
  • [26] Bi-dimensional Empirical Mode Decomposition Based Contrast Enhancement Technique for UAV Thermal Images
    Thillainayagi, R.
    Kumar, K. Senthil
    IETE JOURNAL OF RESEARCH, 2022, 68 (01) : 630 - 637
  • [27] Iteration-Free Bi-Dimensional Empirical Mode Decomposition and Its Application
    Titijaroonroj, Taravichet
    Woraratpanya, Kuntpong
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (09): : 2183 - 2196
  • [28] Discrete multivariate gray model based boundary extension for bi-dimensional empirical mode decomposition
    He, Zhi
    Wang, Qiang
    Shen, Yi
    Wang, Yan
    SIGNAL PROCESSING, 2013, 93 (01) : 124 - 138
  • [29] Automatic Detection of Masses in Mammograms Using Bi-Dimensional Empirical Mode Decomposition
    Vaijayanthi, N.
    Caroline, B. Elizabeth
    Murugan, V. Senthilvel
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2018, 8 (07) : 1326 - 1341
  • [30] Bi-dimensional empirical mode decomposition algorithm for underwater image edge detecting
    Liu, Bo
    Lin, Yan
    Wang, Yunlong
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2013, 45 (02): : 117 - 122