Optimal projections of high dimensional data

被引:3
|
作者
Corchado, E [1 ]
Fyfe, C [1 ]
机构
[1] Univ Burgos, Dept Ingn Civil, Burgos, Spain
关键词
D O I
10.1109/ICDM.2002.1184006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we compare two artificial neural network algorithms for performing Exploratory Projection Pursuit, a statistical technique for investigating data by projecting it onto lower dimensional manifolds. The neural networks are extensions of a network which performs Principal Component Analysis. We illustrate the technique on artificial data before applying it to real data.
引用
收藏
页码:589 / 596
页数:8
相关论文
共 50 条
  • [41] Selection of an optimal treatment on the basis of high-dimensional longitudinal data
    Han, Feng
    Han, Kaishan
    Yi, Danhui
    Zhang, Jingsheng
    WIENER KLINISCHE WOCHENSCHRIFT, 2024, 136 : S464 - S464
  • [42] Optimal Bayesian Feature Selection on High Dimensional Gene Expression Data
    Pour, Ali Foroughi
    Dalton, Lori A.
    2014 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2014, : 1402 - 1405
  • [43] Uncovering interpretable relationships in high-dimensional scientific data through function preserving projections
    Shusen, Liu
    Anirudh, Rushil
    Thiagarajan, Jayaraman J.
    Bremer, Peer-Timo
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (04):
  • [44] Ascending and Descending Order of Random Projections: Comparative Analysis of High-Dimensional Data Clustering
    Pasunuri, Raghunadh
    Venkaiah, Vadlamudi China
    Dhariyal, Bhaskar
    HARMONY SEARCH AND NATURE INSPIRED OPTIMIZATION ALGORITHMS, 2019, 741 : 133 - 142
  • [45] An Optimal Big Data Analytics with Concept Drift Detection on High-Dimensional Streaming Data
    Mansour, Romany F.
    Al-Otaibi, Shaha
    Al-Rasheed, Amal
    Aljuaid, Hanan
    Pustokhina, Irina, V
    Pustokhin, Denis A.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (03): : 2843 - 2858
  • [46] Optimal covariance matrix estimation for high-dimensional noise in high-frequency data
    Chang, Jinyuan
    Hu, Qiao
    Liu, Cheng
    Tang, Cheng Yong
    JOURNAL OF ECONOMETRICS, 2024, 239 (02)
  • [47] Optimal Sparse Singular Value Decomposition for High-Dimensional High-Order Data
    Zhang, Anru
    Han, Rungang
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (528) : 1708 - 1725
  • [48] Optimal estimation of high-dimensional sparse covariance matrices with missing data
    Miao, Li
    Wang, Jinru
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [49] Optimal multiple change-point detection for high-dimensional data
    Pilliat, Emmanuel
    Carpentier, Alexandra
    Verzelen, Nicolas
    ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (01): : 1240 - 1315
  • [50] New quality indexes for optimal clustering model identification with high dimensional data
    Lamirel, Jean-Charles
    Cuxac, Pascal
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2015, : 855 - 862