Optimal Sparse Singular Value Decomposition for High-Dimensional High-Order Data

被引:40
|
作者
Zhang, Anru [1 ]
Han, Rungang [1 ]
机构
[1] Univ Wisconsin, Dept Stat, 1300 Univ Ave, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
High-dimensional high-order data; Projection and thresholding; Singular value decomposition; Sparsity; Tucker low-rank tensor; TENSOR DECOMPOSITIONS; RANK; APPROXIMATION; PCA;
D O I
10.1080/01621459.2018.1527227
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider the sparse tensor singular value decomposition, which aims for dimension reduction on high-dimensional high-order data with certain sparsity structure. A method named sparse tensor alternating thresholding for singular value decomposition (STAT-SVD) is proposed. The proposed procedure features a novel double projection & thresholding scheme, which provides a sharp criterion for thresholding in each iteration. Compared with regular tensor SVD model, STAT-SVD permits more robust estimation under weaker assumptions. Both the upper and lower bounds for estimation accuracy are developed. The proposed procedure is shown to be minimax rate-optimal in a general class of situations. Simulation studies show that STAT-SVD performs well under a variety of configurations. We also illustrate the merits of the proposed procedure on a longitudinal tensor dataset on European country mortality rates. for this article are available online.
引用
收藏
页码:1708 / 1725
页数:18
相关论文
共 50 条
  • [1] A Sparse Singular Value Decomposition Method for High-Dimensional Data
    Yang, Dan
    Ma, Zongming
    Buja, Andreas
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2014, 23 (04) : 923 - 942
  • [2] Federated singular value decomposition for high-dimensional data
    Hartebrodt, Anne
    Rottger, Richard
    Blumenthal, David B.
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2024, 38 (03) : 938 - 975
  • [3] Federated singular value decomposition for high-dimensional data
    Anne Hartebrodt
    Richard Röttger
    David B. Blumenthal
    [J]. Data Mining and Knowledge Discovery, 2024, 38 : 938 - 975
  • [4] Asymptotic Conditional Singular Value Decomposition for High-Dimensional Genomic Data
    Leek, Jeffrey T.
    [J]. BIOMETRICS, 2011, 67 (02) : 344 - 352
  • [5] Mining high-dimensional scientific data sets using singular value decomposition
    Maltseva, E
    Pizzuti, C
    Talia, D
    [J]. DATA MINING FOR SCIENTIFIC AND ENGINEERING APPLICATIONS, 2001, 2 : 425 - 438
  • [6] SHOSVD: Secure Outsourcing of High-Order Singular Value Decomposition
    Chen, Jinrong
    Liu, Lin
    Chen, Rongmao
    Peng, Wei
    [J]. INFORMATION SECURITY AND PRIVACY, ACISP 2020, 2020, 12248 : 309 - 329
  • [7] ASSVD: Adaptive Sparse Singular Value Decomposition for High Dimensional Matrices
    Ding, Xiucai
    Chen, Xianyi
    Zou, Mengling
    Zhang, Guangxing
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2020, 14 (06): : 2634 - 2648
  • [8] High-Dimensional Generalized Orthogonal Matching Pursuit With Singular Value Decomposition
    Zong, Zhaoyun
    Fu, Ting
    Yin, Xingyao
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [9] Compression of aerodynamic databases using high-order singular value decomposition
    Lorente, L. S.
    Vega, J. M.
    Velazquez, A.
    [J]. AEROSPACE SCIENCE AND TECHNOLOGY, 2010, 14 (03) : 168 - 177
  • [10] Generation of Aerodynamic Databases Using High-Order Singular Value Decomposition
    Lorente, L. S.
    Vega, J. M.
    Velazquez, A.
    [J]. JOURNAL OF AIRCRAFT, 2008, 45 (05): : 1779 - 1788