Hamiltonian cycles in T-graphs

被引:11
|
作者
Reay, JR [1 ]
Zamfirescu, T
机构
[1] Western Washington Univ, Dept Math, Bellingham, WA 98225 USA
[2] Univ Dortmund, Dept Math, D-46 Dortmund, Germany
关键词
D O I
10.1007/s004540010051
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
There is only one finite, 2-connected, linearly convex graph in the Archimedean Abstract. triangular tiling that does not have a Hamiltonian cycle.
引用
收藏
页码:497 / 502
页数:6
相关论文
共 50 条
  • [31] Finding Large Cycles in Hamiltonian Graphs
    Feder, Tomas
    Motwani, Rajeev
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 166 - 175
  • [32] HAMILTONIAN CYCLES IN CAYLEY COLOR GRAPHS
    KLERLEIN, JB
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A654 - A654
  • [33] On certain Hamiltonian cycles in planar graphs
    Böhme, T
    Harant, J
    Tkác, M
    JOURNAL OF GRAPH THEORY, 1999, 32 (01) : 81 - 96
  • [34] Hamiltonian Cycles in Normal Cayley Graphs
    Jose Montellano-Ballesteros, Juan
    Santiago Arguello, Anahy
    GRAPHS AND COMBINATORICS, 2019, 35 (06) : 1707 - 1714
  • [35] Hamiltonian cycles in covering graphs of trees
    Hell, Pavol
    Nishiyama, Hiroshi
    Stacho, Ladislav
    DISCRETE APPLIED MATHEMATICS, 2020, 282 (271-281) : 271 - 281
  • [36] Disjoint hamiltonian cycles in bipartite graphs
    Ferrara, Michael
    Gould, Ronald
    Tansey, Gerard
    Whalen, Thor
    DISCRETE MATHEMATICS, 2009, 309 (12) : 3811 - 3820
  • [37] Polyhedral graphs without Hamiltonian cycles
    Walther, H
    DISCRETE APPLIED MATHEMATICS, 1997, 79 (1-3) : 257 - 263
  • [38] Hamiltonian Cycles in Covering Graphs of Trees
    Hell, Pavol
    Nishiyama, Hiroshi
    Stacho, Ladislav
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, COCOA 2017, PT II, 2017, 10628 : 261 - 275
  • [39] Hamiltonian Cycles in Normal Cayley Graphs
    Juan José Montellano-Ballesteros
    Anahy Santiago Arguello
    Graphs and Combinatorics, 2019, 35 : 1707 - 1714
  • [40] MAXIMAL HAMILTONIAN CYCLES IN SQUARES OF GRAPHS
    HOBBS, AM
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1979, 26 (01) : 35 - 49