Cascaded grammatical relation-driven parsing using Support Vector Machines

被引:0
|
作者
Lee, Songwook [1 ]
机构
[1] Dongseo Univ, Div Comp & Informat Engn, Pusan 617716, South Korea
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study aims to identify dependency structure in Korean sentences with the cascaded chunking strategy. In the first stages of the cascade, we find chunks of NP and guess grammatical relations (GRs) using Support Vector Machine (SVM) classifiers for every possible modifier-head pairs of chunks in terms of GR categories as subject, object, complement, adverbial, and etc. In the next stage, we filter out incorrect modifier-head relations in each cascade for its corresponding GR using the SVM classifiers and the characteristics of the Korean language such as distance, no-crossing and case property. Through an experiment with a tree and GR tagged corpus for training the proposed parser, we achieved an overall accuracy of 85.7% on average.
引用
收藏
页码:253 / 259
页数:7
相关论文
共 50 条
  • [41] Document categorization using support vector machines
    Villasana, Sergio
    Seijas, Cesar
    Caralli, Antonino
    Jimenez, Jesus
    Pacheco, Jose
    INGENIERIA UC, 2008, 15 (03): : 45 - 52
  • [42] Stock selection using Support Vector Machines
    Fan, A
    Palaniswami, M
    IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 1793 - 1798
  • [43] Incident detection using support vector machines
    Yuan, F
    Cheu, RL
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2003, 11 (3-4) : 309 - 328
  • [44] Flood forecasting using support vector machines
    Han, D.
    Chan, L.
    Zhu, N.
    JOURNAL OF HYDROINFORMATICS, 2007, 9 (04) : 267 - 276
  • [45] Sparse deconvolution using support vector machines
    Rojo-Alvarez, Jose Luis
    Martinez-Ramon, Manel
    Munoz-Mari, Jordi
    Camps-Valls, Gustavo
    Cruz, Carlos M.
    Figueiras-Vidal, Anibal R.
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2008, 2008 (1)
  • [46] Contractor Prequalification Using Support Vector Machines
    Elgamal, Salah
    Hosny, Ossama
    PROCEEDINGS OF THE CANADIAN SOCIETY FOR CIVIL ENGINEERING ANNUAL CONFERENCE 2023, VOL 4, CSCE 2023, 2025, 498 : 251 - 260
  • [47] Damage identification using support vector machines
    Worden, K
    Lane, AJ
    SMART MATERIALS & STRUCTURES, 2001, 10 (03): : 540 - 547
  • [48] Classification of Performers using Support Vector Machines
    Reljin, Natasa
    Pokrajac, Dragoljub
    NEUREL 2008: NINTH SYMPOSIUM ON NEURAL NETWORK APPLICATIONS IN ELECTRICAL ENGINEERING, PROCEEDINGS, 2008, : 156 - +
  • [49] Forecast of Temperature using Support Vector Machines
    Perez-Vega, Abrahan
    Travieso, Carlos M.
    Hernandez-Travieso, Jose G.
    Alonso, Jesus B.
    Dutta, Malay Kishore
    Singh, Anushikha
    2016 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND AUTOMATION (ICCCA), 2016, : 388 - 392
  • [50] Pose classification using support vector machines
    Ardizzone, E
    Chella, A
    Pirrone, R
    IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL VI, 2000, : 317 - 322