Document categorization using support vector machines

被引:0
|
作者
Villasana, Sergio [1 ]
Seijas, Cesar [1 ]
Caralli, Antonino [2 ]
Jimenez, Jesus [3 ]
Pacheco, Jose [4 ]
机构
[1] Univ Carabobo, Fac Ingn, CITAEC, Valencia, Venezuela
[2] Univ Carabobo, Fac Ingn, Ctr Invest & Bioingn, Valencia, Venezuela
[3] Univ Carabobo, Fac Ingn, Dept Matemat, Estudios Basicos, Valencia, Venezuela
[4] Univ Carabobo, Fac Ingn, CPI, Valencia, Venezuela
来源
INGENIERIA UC | 2008年 / 15卷 / 03期
关键词
support vector machine; text categorization; string kernel;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this investigation a nu-SVC and string kernel-based categorizer of documents (undergraduate final projects) was developed. A corpus for training was generated from the compounded phrases (two-word phrases) and single words that were more representative of the selected areas (Electrical and Civilian Engineering), which were extracted from the document titles. The test set was made up with all the document titles of the undergraduate final projects between the years 1997 and 2006 (both years inclusive). The performance of the classifier, varying the parameters of the nu-SVC and the string kernel, was good after the tuning process. Results showed the great potential of the support vector machine in the text classification area.
引用
收藏
页码:45 / 52
页数:8
相关论文
共 50 条
  • [1] Acceleration Signal Categorization Using Support Vector Machines
    Davis, B. T.
    Caicedo, J. M.
    Hirth, V. A.
    Easterling, B. M.
    [J]. EXPERIMENTAL TECHNIQUES, 2019, 43 (03) : 359 - 368
  • [2] Acceleration Signal Categorization Using Support Vector Machines
    B. T. Davis
    J. M. Caicedo
    V. A. Hirth
    B. M. Easterling
    [J]. Experimental Techniques, 2019, 43 : 359 - 368
  • [3] Video Genre Categorization Using Support Vector Machines
    Dammak, Nouha
    BenAyed, Yassine
    [J]. 2014 1ST INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP 2014), 2014, : 106 - 110
  • [4] Support vector machines for spam categorization
    Drucker, H
    Wu, DH
    Vapnik, VN
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (05): : 1048 - 1054
  • [5] Feature selection for scene categorization using support vector machines
    Devendran, V
    Thiagarajan, Hemalatha
    Santra, A. K.
    Wahi, Amitabh
    [J]. CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 1, PROCEEDINGS, 2008, : 588 - +
  • [6] Using Support Vector Machines as Learning Algorithm for Video Categorization
    Manuel Perea-Ortega, Jose
    Montejo-Raez, Arturo
    Teresa Martin-Valdivia, Maria
    Alfonso Urena-Lopez, L.
    [J]. MULTILINGUAL INFORMATION ACCESS EVALUATION II: MULTIMEDIA EXPERIMENTS, PT II, 2010, 6242 : 373 - 376
  • [7] Web Document Categorization by Support Vector Clustering
    Shi, Daming
    Tsui, Ming Hei
    Liu, Jigang
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 1482 - 1487
  • [8] Color photo categorization using compressed histograms and support vector machines
    Feng, X
    Fang, JZ
    Qiu, GP
    [J]. 2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, 2003, : 753 - 756
  • [9] SVM categorizer: A generic categorization tool using support vector machines
    Kapoutsis, E
    Theodoulidis, B
    Saraee, M
    [J]. IC-AI '04 & MLMTA'04 , VOL 1 AND 2, PROCEEDINGS, 2004, : 1109 - 1112
  • [10] Relevance feedback document retrieval using support vector machines
    Onoda, T
    Murata, H
    Yamada, S
    [J]. 2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 1359 - 1364