Color photo categorization using compressed histograms and support vector machines

被引:0
|
作者
Feng, X [1 ]
Fang, JZ [1 ]
Qiu, GP [1 ]
机构
[1] Univ Nottingham, Sch Comp Sci, Nottingham NG7 2RD, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, an efficient method using various histogram-based (high-dimensional) image content descriptors for automatically classifying general color photos into relevant categories is presented. Principal component analysis (PCA) is used to project the original high dimensional histograms onto their eigenspaces. Lower dimensional eigenfeatures are then used to train support vector machines (SVMs) to classify images into their categories. Experimental results show that even though different descriptors perform differently, they are all highly redundant. It is shown that the dimensionality of all these descriptors, regardless of their performances, can be significantly reduced without affecting classification accuracy. Such scheme would be useful when it is used in an interactive setting for relevant feedback in content-based image retrieval, where low dimensional content descriptors will enable fast online learning and reclassification of results.
引用
收藏
页码:753 / 756
页数:4
相关论文
共 50 条
  • [1] Document categorization using support vector machines
    Villasana, Sergio
    Seijas, Cesar
    Caralli, Antonino
    Jimenez, Jesus
    Pacheco, Jose
    [J]. INGENIERIA UC, 2008, 15 (03): : 45 - 52
  • [2] Acceleration Signal Categorization Using Support Vector Machines
    Davis, B. T.
    Caicedo, J. M.
    Hirth, V. A.
    Easterling, B. M.
    [J]. EXPERIMENTAL TECHNIQUES, 2019, 43 (03) : 359 - 368
  • [3] Acceleration Signal Categorization Using Support Vector Machines
    B. T. Davis
    J. M. Caicedo
    V. A. Hirth
    B. M. Easterling
    [J]. Experimental Techniques, 2019, 43 : 359 - 368
  • [4] Video Genre Categorization Using Support Vector Machines
    Dammak, Nouha
    BenAyed, Yassine
    [J]. 2014 1ST INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP 2014), 2014, : 106 - 110
  • [5] Support vector machines for spam categorization
    Drucker, H
    Wu, DH
    Vapnik, VN
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (05): : 1048 - 1054
  • [6] Feature selection for scene categorization using support vector machines
    Devendran, V
    Thiagarajan, Hemalatha
    Santra, A. K.
    Wahi, Amitabh
    [J]. CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 1, PROCEEDINGS, 2008, : 588 - +
  • [7] Using Support Vector Machines as Learning Algorithm for Video Categorization
    Manuel Perea-Ortega, Jose
    Montejo-Raez, Arturo
    Teresa Martin-Valdivia, Maria
    Alfonso Urena-Lopez, L.
    [J]. MULTILINGUAL INFORMATION ACCESS EVALUATION II: MULTIMEDIA EXPERIMENTS, PT II, 2010, 6242 : 373 - 376
  • [8] Color images segmentation using the support vector machines
    Gómez-Moreno, H.
    Gil-Jiménez, P.
    Lafuente-Arroyo, S.
    Vicen-Bueno, R.
    Sánchez-Montero, R.
    [J]. Recent Advances in Intelligent Systems and Signal Processing, 2003, : 151 - 155
  • [9] Color Image Classification Using Support Vector Machines
    冯霞
    [J]. 中国民航大学学报, 2003, (S2) : 184 - 190
  • [10] SVM categorizer: A generic categorization tool using support vector machines
    Kapoutsis, E
    Theodoulidis, B
    Saraee, M
    [J]. IC-AI '04 & MLMTA'04 , VOL 1 AND 2, PROCEEDINGS, 2004, : 1109 - 1112