Sparsity-promoting optimal control of systems with invariances and symmetries

被引:2
|
作者
Dhingra, Neil K. [1 ]
Wu, Xiaofan [1 ]
Jovanovic, Ryivlihailo R. [1 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 18期
基金
美国国家科学基金会;
关键词
Convex synthesis; H-2/H-infinity optimal control; sparse controller; sparsity-promoting optimal control; spatially-invariant systems; structured design; symmetry; DISTRIBUTED CONTROL; CONSENSUS; DESIGN; GRAPHS;
D O I
10.1016/j.ifacol.2016.10.237
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We take advantage of syntem invariance: and symmetricn to gain convexity and computational arlvantanw in regularized H-2 and H-infinity optimal control Problems. For systems with symmetric dynamics matrices, the problem of minimizing the H-2 or H-infinity performance of the closed-loop system can be cast as a convex optimization problem. Although the assumption of symmetric is restrictive, studying the symmetric component of a general system's dynamic matrices provides bounds on the H-2 and H-infinity performance of the original system. Furthermore, we show that for certain classes of system, blocks-diagnolization of the system matrices can bring the regularized optimal control problems into forms amenable to efficient computation via distributed algorithms. One such class of systems is spatially-invariant systems, whose dynamic matrices are circulant and therefore block-diagonalizable by the discrete Fourier transform. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:636 / 641
页数:6
相关论文
共 50 条
  • [31] Low-Complexity Proportionate Algorithms with Sparsity-Promoting Penalties
    Ferreira, Tadeu N.
    Lima, Markus V. S.
    Diniz, Paulo S. R.
    Martins, Wallace A.
    2016 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2016, : 253 - 256
  • [32] Sparsity-Promoting Controller Design for VSC-Based Microgrids
    Tian, Yanhua
    Taylor, Joshua A.
    2016 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2016, : 836 - 840
  • [33] Target Detection and Tracking via Sparsity-Promoting Tikhonov Regularization
    Fridman, Sergey
    Nickisch, L. J.
    Hausman, Mark
    Matthews, Michael
    2018 IEEE RADAR CONFERENCE (RADARCONF18), 2018, : 576 - 581
  • [34] SPARSITY-PROMOTING BOOTSTRAP METHOD FOR LARGE-SCALE DATA
    Koivunen, Visa
    Mozafari, Emad
    2016 50TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2016, : 343 - 348
  • [35] A Ratio-Norm Regularization for Sparsity-Promoting Electromagnetic Inversion
    Gao, Lingqi
    Bagci, Hakan
    2024 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM, ACES 2024, 2024,
  • [36] Sparsity-Promoting Calibration for GRAPPA Accelerated Parallel MRI Reconstruction
    Weller, Daniel S.
    Polimeni, Jonathan R.
    Grady, Leo
    Wald, Lawrence L.
    Adalsteinsson, Elfar
    Goyal, Vivek K.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (07) : 1325 - 1335
  • [37] Sparsity-promoting multiparameter pseudoinverse Born inversion in acoustic media
    Farshad, Milad
    Chauris, Herve
    GEOPHYSICS, 2021, 86 (03) : S205 - S220
  • [38] Representer Theorems for Sparsity-Promoting l1 Regularization
    Unser, Michael
    Fageot, Julien
    Gupta, Harshit
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (09) : 5167 - 5180
  • [39] SPARSITY-PROMOTING ADAPTIVE ALGORITHM FOR DISTRIBUTED LEARNING IN DIFFUSION NETWORKS
    Chouvardas, Symeon
    Slavakis, Konstantinos
    Kopsinis, Yannis
    Theodoridis, Sergios
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 1084 - 1088
  • [40] A fast joint seismic data reconstruction by sparsity-promoting inversion
    Bai, Lanshu
    Lu, Huiyi
    Liu, Yike
    Khan, Majid
    GEOPHYSICAL PROSPECTING, 2017, 65 (04) : 926 - 940