Low-Complexity Proportionate Algorithms with Sparsity-Promoting Penalties

被引:0
|
作者
Ferreira, Tadeu N. [1 ]
Lima, Markus V. S. [2 ,3 ]
Diniz, Paulo S. R. [2 ,3 ]
Martins, Wallace A. [2 ,3 ]
机构
[1] Univ Fed Fluminense, Telecommun Engn Dept, Rua Passo da Patria 156,Bldg D,Room 504, BR-24210240 Niteroi, RJ, Brazil
[2] Fed Univ Rio de Janeiro UFRJ, Poli, POB 68504, BR-21941972 Rio De Janeiro, RJ, Brazil
[3] Fed Univ Rio de Janeiro UFRJ, COPPE, POB 68504, BR-21941972 Rio De Janeiro, RJ, Brazil
关键词
adaptive filtering; sparsity; set-membership;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
There are two main families of algorithms that tackle the problem of sparse system identification: the proportionate family and the one that employs sparsity-promoting penalty functions. Recently, a new approach was proposed with the l(0)-IPAPA algorithm, which combines proportionate updates with sparsity-promoting penalties. This paper proposes some modifications to the l(0)-IPAPAalgorithm in order to decrease its computational complexity while preserving its good convergence properties. Among these modifications, the inclusion of a dataselection mechanism provides promising results. Some enlightening simulation results are provided in order to verify and compare the performance of the proposed algorithms.
引用
收藏
页码:253 / 256
页数:4
相关论文
共 50 条
  • [1] Greedy Sparsity-Promoting Algorithms for Distributed Learning
    Chouvardas, Symeon
    Mileounis, Gerasimos
    Kalouptsidis, Nicholas
    Theodoridis, Sergios
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (06) : 1419 - 1432
  • [2] Sparsity-promoting Bayesian inversion
    Kolehmainen, V.
    Lassas, M.
    Niinimaki, K.
    Siltanen, S.
    INVERSE PROBLEMS, 2012, 28 (02)
  • [3] Sparsity-promoting algorithms for the discovery of informative Koopman-invariant subspaces
    Pan, Shaowu
    Arnold-Medabalimi, Nicholas
    Duraisamy, Karthik
    JOURNAL OF FLUID MECHANICS, 2021, 917
  • [4] Sparsity-promoting dynamic mode decomposition
    Jovanovic, Mihailo R.
    Schmid, Peter J.
    Nichols, Joseph W.
    PHYSICS OF FLUIDS, 2014, 26 (02)
  • [5] Evaluation of Optimization Algorithms and Noise Robustness of Sparsity-Promoting Dynamic Mode Decomposition
    Iwasaki, Yuto
    Nonomura, Taku
    Nakai, Kumi
    Nagata, Takayuki
    Saito, Yuji
    Asai, Keisuke
    IEEE ACCESS, 2022, 10 : 80748 - 80763
  • [6] Low-complexity minimization algorithms
    Di Fiore, C
    Fanelli, S
    Zellini, P
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2005, 12 (08) : 755 - 768
  • [7] Sparsity-promoting photoacoustic imaging with source estimation
    Sharan, Shashin
    Kumar, Rajiv
    Dumani, Diego S.
    Louboutin, Mathias
    Wang, Rongrong
    Emelianov, Stanislav
    Herrmann, Felix J.
    2018 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2018,
  • [8] Fast sparsity-promoting microseismic source estimation
    Sharan, Shashin
    Wang, Rongrong
    Herrmann, Felix J.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 216 (01) : 164 - 181
  • [9] Bayesian Classifier for Sparsity-Promoting Feature Selection
    Xu, Danlei
    Du, Lan
    Liu, Hongwei
    Wang, Penghui
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2015, 29 (06)
  • [10] A Sparsity-promoting Dictionary Model for Variational Autoencoders
    Sadeghi, Mostafa
    Magron, Paul
    INTERSPEECH 2022, 2022, : 366 - 370