Quasiconservation laws for compressible three-dimensional Navier-Stokes flow

被引:2
|
作者
Gibbon, J. D. [1 ,2 ]
Holm, D. D. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Isaac Newton Inst Math Sci, Cambridge CB3 0EW, England
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 04期
基金
欧洲研究理事会;
关键词
D O I
10.1103/PhysRevE.86.047301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We formulate the quasi-Lagrangian fluid transport dynamics of mass density rho and the projection q = omega . del rho vorticity omega onto the density gradient, as determined by the three-dimensional compressible Navier-Stokes equations for an ideal gas, although the results apply for an arbitrary equation of state. It turns out that the quasi-Lagrangian transport of q cannot cross a level set of rho. That is, in this formulation, level sets of rho (isopycnals) are impermeable to the transport of the projection q.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Global attractors for the Navier-Stokes equations of three-dimensional compressible flow
    Feireisl, E
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (01): : 35 - 39
  • [2] On the study of three-dimensional compressible Navier-Stokes equations
    Abdelwahed, Mohamed
    Bade, Rabe
    Chaker, Hedia
    Hassine, Maatoug
    [J]. BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [3] Analytic solutions for the three-dimensional compressible Navier-Stokes equation
    Barna, I. F.
    Matyas, L.
    [J]. FLUID DYNAMICS RESEARCH, 2014, 46 (05)
  • [4] Three-Dimensional Stabilized Finite Elements for Compressible Navier-Stokes
    Erwin, J. Taylor
    Anderson, W. Kyle
    Kapadia, Sagar
    Wang, Li
    [J]. AIAA JOURNAL, 2013, 51 (06) : 1404 - 1419
  • [5] On the regularity criteria for the three-dimensional compressible Navier-Stokes system in Lorentz spaces
    Wang, Yanqing
    Wang, Yongfu
    Ye, Yulin
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) : 4763 - 4774
  • [6] Performance of three-dimensional compressible Navier-Stokes codes at low Mach numbers
    Milholen, WE
    Chokani, N
    AlSaadi, J
    [J]. AIAA JOURNAL, 1996, 34 (07) : 1356 - 1362
  • [7] Existence of weak solutions to the three-dimensional steady compressible Navier-Stokes equations
    Jiang, Song
    Zhou, Chunhui
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (04): : 485 - 498
  • [8] Weak solutions to the three-dimensional steady full compressible Navier-Stokes system
    Zhong, Xin
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 127 : 71 - 93
  • [9] Attractors for three-dimensional Navier-Stokes equations
    Capinski, M
    Cutland, NJ
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1966): : 2413 - 2426
  • [10] CONVERGENCE RATE OF FULLY COMPRESSIBLE NAVIER-STOKES EQUATIONS IN THREE-DIMENSIONAL BOUNDED DOMAINS
    Liang, M. I. N.
    Ou, Y. A. O. B. I. N.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (03): : 1673 - 1695