Crystal Nucleation in the Hard-Sphere System Revisited: A Critical Test of Theoretical Approaches

被引:11
|
作者
Toth, Gyula I. [1 ]
Granasy, Laszlo [2 ]
机构
[1] Res Inst Solid State Phys & Opt, H-1525 Budapest, Hungary
[2] Brunel Univ, Brunel Ctr Adv Solidificat Technol, Uxbridge UB8 3PH, Middx, England
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2009年 / 113卷 / 15期
关键词
EQUATION-OF-STATE; DIFFUSE INTERFACE ANALYSIS; SOLID-LIQUID INTERFACE; FREE-ENERGY; MOLECULAR-DYNAMICS; CRYSTALLIZATION KINETICS; HOMOGENEOUS NUCLEATION; STATISTICAL-MECHANICS; NONUNIFORM SYSTEM; HILLIARD THEORY;
D O I
10.1021/jp8097439
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The hard-sphere system is the best known fluid that crystallizes: the solid-liquid interfacial free energy, the equations of state, and the height of the nucleation barrier are known accurately, offering a unique possibility for a quantitative validation of nucleation theories. A recent significant downward revision of the interfacial free energy from similar to 0.61kT/sigma(2) to (0.56 +/- 0.02)kT/sigma(2) [Davidchack, R.; Morris, J. R.; Laird, B. B. J. Chem. Phys. 2006, 125, 094710] necessitates a re-evaluation of theoretical approaches to crystal nucleation. This has been carried out for the droplet model of the classical nucleation theory (CNT), the self-consistent classical theory (SCCT), a phenomenological diffuse interface theory (DIT), and single- and two-field variants of the phase field theory that rely on either the usual double-well and interpolation functions (PFr/S1 and PFr/S2, respectively) or on a Ginzburg-Landau expanded free energy that reflects the crystal symmetries (PFT/GL1 and PFF/GL2). We find that the PFr/GL1, PFr/GL2, and DIT models predict fairly accurately the height of the nucleation barrier known from Monte Carlo simulations in the volume fraction range of 0.52 < phi < 0.54, whereas the CNT, SCCT, PFr/S1, and PFr/S2 models underestimate it significantly.
引用
收藏
页码:5141 / 5148
页数:8
相关论文
共 50 条
  • [41] Transport properties of the Fermi hard-sphere system
    Mecca, Angela
    Lovato, Alessandro
    Benhar, Omar
    Polls, Artur
    PHYSICAL REVIEW C, 2016, 93 (03)
  • [42] VARIATIONAL APPROACH TO THE FERMI HARD-SPHERE SYSTEM
    FABROCINI, A
    FANTONI, S
    POLLS, A
    ROSATI, S
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1980, 56 (01): : 33 - 43
  • [43] Crystallization of hard-sphere colloids -: deviations from classical nucleation theory
    Bryant, Gary
    Schoepe, Hans Joachim
    van Megen, William
    2006 INTERNATIONAL CONFERENCE ON NANOSCIENCE AND NANOTECHNOLOGY, VOLS 1 AND 2, 2006, : 132 - +
  • [44] OBSERVATION OF ACCELERATED NUCLEATION IN DENSE COLLOIDAL FLUIDS OF HARD-SPHERE PARTICLES
    HARLAND, JL
    HENDERSON, SI
    UNDERWOOD, SM
    VANMEGEN, W
    PHYSICAL REVIEW LETTERS, 1995, 75 (19) : 3572 - 3575
  • [45] On the phase diagram of a 'collapsing' hard-sphere system
    Stishov, SM
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 2002, 82 (11): : 1287 - 1290
  • [46] Dynamical study of a polydisperse hard-sphere system
    Nogawa, Tomoaki
    Ito, Nobuyasu
    Watanabe, Hiroshi
    PHYSICAL REVIEW E, 2010, 82 (01):
  • [47] Numerical and theoretical study of a monodisperse hard-sphere glass former
    Charbonneau, P.
    Ikeda, A.
    van Meel, J. A.
    Miyazaki, K.
    PHYSICAL REVIEW E, 2010, 81 (04):
  • [48] A THEORETICAL-STUDY OF THE HARD-SPHERE FLUID SOLID INTERFACE
    MCMULLEN, WE
    OXTOBY, DW
    JOURNAL OF CHEMICAL PHYSICS, 1988, 88 (03): : 1967 - 1975
  • [49] The theoretical prediction of the critical points of alkanes, perfluoroalkanes, and their mixtures using bonded hard-sphere (BHS) theory
    Archer, AL
    Amos, MD
    Jackson, G
    McLure, IA
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1996, 17 (01) : 201 - 211
  • [50] Computer Simulations of Crystal Growth Using a Hard-Sphere Model
    Mori, Atsushi
    CRYSTALS, 2017, 7 (04)