Crystal Nucleation in the Hard-Sphere System Revisited: A Critical Test of Theoretical Approaches

被引:11
|
作者
Toth, Gyula I. [1 ]
Granasy, Laszlo [2 ]
机构
[1] Res Inst Solid State Phys & Opt, H-1525 Budapest, Hungary
[2] Brunel Univ, Brunel Ctr Adv Solidificat Technol, Uxbridge UB8 3PH, Middx, England
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2009年 / 113卷 / 15期
关键词
EQUATION-OF-STATE; DIFFUSE INTERFACE ANALYSIS; SOLID-LIQUID INTERFACE; FREE-ENERGY; MOLECULAR-DYNAMICS; CRYSTALLIZATION KINETICS; HOMOGENEOUS NUCLEATION; STATISTICAL-MECHANICS; NONUNIFORM SYSTEM; HILLIARD THEORY;
D O I
10.1021/jp8097439
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The hard-sphere system is the best known fluid that crystallizes: the solid-liquid interfacial free energy, the equations of state, and the height of the nucleation barrier are known accurately, offering a unique possibility for a quantitative validation of nucleation theories. A recent significant downward revision of the interfacial free energy from similar to 0.61kT/sigma(2) to (0.56 +/- 0.02)kT/sigma(2) [Davidchack, R.; Morris, J. R.; Laird, B. B. J. Chem. Phys. 2006, 125, 094710] necessitates a re-evaluation of theoretical approaches to crystal nucleation. This has been carried out for the droplet model of the classical nucleation theory (CNT), the self-consistent classical theory (SCCT), a phenomenological diffuse interface theory (DIT), and single- and two-field variants of the phase field theory that rely on either the usual double-well and interpolation functions (PFr/S1 and PFr/S2, respectively) or on a Ginzburg-Landau expanded free energy that reflects the crystal symmetries (PFT/GL1 and PFF/GL2). We find that the PFr/GL1, PFr/GL2, and DIT models predict fairly accurately the height of the nucleation barrier known from Monte Carlo simulations in the volume fraction range of 0.52 < phi < 0.54, whereas the CNT, SCCT, PFr/S1, and PFr/S2 models underestimate it significantly.
引用
收藏
页码:5141 / 5148
页数:8
相关论文
共 50 条
  • [21] THE STABILITY OF THE AB13 CRYSTAL IN A BINARY HARD-SPHERE SYSTEM
    ELDRIDGE, MD
    MADDEN, PA
    FRENKEL, D
    MOLECULAR PHYSICS, 1993, 79 (01) : 105 - 120
  • [22] DIFFUSION OF A TEST PARTICLE IN A HARD-SPHERE LIQUID
    SELME, MO
    JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (02): : 1209 - 1212
  • [23] Prediction of binary hard-sphere crystal structures
    Filion, Laura
    Dijkstra, Marjolein
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [24] PRIMARY RELAXATION IN A HARD-SPHERE SYSTEM
    FUCHS, M
    HOFACKER, I
    LATZ, A
    PHYSICAL REVIEW A, 1992, 45 (02): : 898 - 912
  • [25] Evolution of fivefold local symmetry during crystal nucleation and growth in dense hard-sphere packings
    Karayiannis, Nikos Ch.
    Malshe, Rohit
    Kroeger, Martin
    de Pablo, Juan J.
    Laso, Manuel
    SOFT MATTER, 2012, 8 (03) : 844 - 858
  • [26] Propagation of Correlations in a Hard-Sphere System
    Viktor Gerasimenko
    Igor Gapyak
    Journal of Statistical Physics, 2022, 189
  • [27] Propagation of Correlations in a Hard-Sphere System
    Gerasimenko, Viktor
    Gapyak, Igor
    JOURNAL OF STATISTICAL PHYSICS, 2022, 189 (01)
  • [28] METASTABLE DYNAMICS OF THE HARD-SPHERE SYSTEM
    YEO, J
    PHYSICAL REVIEW E, 1995, 52 (01): : 853 - 861
  • [29] ACTIVATION-ENERGY FOR NUCLEATION OF THE SUPERCOOLED HARD-SPHERE FLUID
    TENNE, R
    CHEMICAL PHYSICS LETTERS, 1982, 87 (02) : 177 - 180
  • [30] A NEW APPROACH TO HARD-SPHERE SYSTEM IN EQUILIBRIUM .2. 3-DIMENSIONAL HARD-SPHERE SYSTEM
    SUGIYAMA, M
    PROGRESS OF THEORETICAL PHYSICS, 1980, 63 (05): : 1495 - 1508