Crystal Nucleation in the Hard-Sphere System Revisited: A Critical Test of Theoretical Approaches

被引:11
|
作者
Toth, Gyula I. [1 ]
Granasy, Laszlo [2 ]
机构
[1] Res Inst Solid State Phys & Opt, H-1525 Budapest, Hungary
[2] Brunel Univ, Brunel Ctr Adv Solidificat Technol, Uxbridge UB8 3PH, Middx, England
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2009年 / 113卷 / 15期
关键词
EQUATION-OF-STATE; DIFFUSE INTERFACE ANALYSIS; SOLID-LIQUID INTERFACE; FREE-ENERGY; MOLECULAR-DYNAMICS; CRYSTALLIZATION KINETICS; HOMOGENEOUS NUCLEATION; STATISTICAL-MECHANICS; NONUNIFORM SYSTEM; HILLIARD THEORY;
D O I
10.1021/jp8097439
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The hard-sphere system is the best known fluid that crystallizes: the solid-liquid interfacial free energy, the equations of state, and the height of the nucleation barrier are known accurately, offering a unique possibility for a quantitative validation of nucleation theories. A recent significant downward revision of the interfacial free energy from similar to 0.61kT/sigma(2) to (0.56 +/- 0.02)kT/sigma(2) [Davidchack, R.; Morris, J. R.; Laird, B. B. J. Chem. Phys. 2006, 125, 094710] necessitates a re-evaluation of theoretical approaches to crystal nucleation. This has been carried out for the droplet model of the classical nucleation theory (CNT), the self-consistent classical theory (SCCT), a phenomenological diffuse interface theory (DIT), and single- and two-field variants of the phase field theory that rely on either the usual double-well and interpolation functions (PFr/S1 and PFr/S2, respectively) or on a Ginzburg-Landau expanded free energy that reflects the crystal symmetries (PFT/GL1 and PFF/GL2). We find that the PFr/GL1, PFr/GL2, and DIT models predict fairly accurately the height of the nucleation barrier known from Monte Carlo simulations in the volume fraction range of 0.52 < phi < 0.54, whereas the CNT, SCCT, PFr/S1, and PFr/S2 models underestimate it significantly.
引用
收藏
页码:5141 / 5148
页数:8
相关论文
共 50 条
  • [1] Diffuse interface analysis of crystal nucleation in hard-sphere liquid
    Gránásy, L
    Pusztai, T
    JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (22): : 10121 - 10124
  • [2] Crystal nucleation in the hard sphere system
    O'Malley, B
    Snook, I
    PHYSICAL REVIEW LETTERS, 2003, 90 (08)
  • [3] HARD-SPHERE CRYSTAL
    HONDA, K
    PROGRESS OF THEORETICAL PHYSICS, 1976, 55 (04): : 1024 - 1037
  • [4] Prediction of absolute crystal-nucleation rate in hard-sphere colloids
    Auer, S
    Frenkel, D
    NATURE, 2001, 409 (6823) : 1020 - 1023
  • [5] Prediction of absolute crystal-nucleation rate in hard-sphere colloids
    Stefan Auer
    Daan Frenkel
    Nature, 2001, 409 : 1020 - 1023
  • [6] CAVITIES IN THE HARD-SPHERE CRYSTAL AND FLUID
    BOWLES, RK
    SPEEDY, RJ
    MOLECULAR PHYSICS, 1994, 83 (01) : 113 - 125
  • [7] ELASTIC PROPERTIES OF HARD-SPHERE CRYSTAL
    VELASCO, E
    TARAZONA, P
    PHYSICAL REVIEW A, 1987, 36 (02): : 979 - 981
  • [8] Elasticity of a polydisperse hard-sphere crystal
    Yang, Mingcheng
    Ma, Hongru
    PHYSICAL REVIEW E, 2008, 78 (01):
  • [9] Equation of state of the hard-sphere crystal
    Rascon, C
    Mederos, L
    Navascues, G
    PHYSICAL REVIEW E, 1996, 53 (06): : 5698 - 5703
  • [10] Equation of state of the hard-sphere crystal
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 53 (6-A pt A):