Low-temperature epitaxial growth of the quaternary wide band gap semiconductor SiCAlN

被引:35
|
作者
Roucka, R [1 ]
Tolle, J
Chizmeshya, AVG
Crozier, PA
Poweleit, CD
Smith, DJ
Tsong, IST
Kouvetakis, J
机构
[1] Arizona State Univ, Dept Phys & Astron, Tempe, AZ 85287 USA
[2] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA
[3] Arizona State Univ, Ctr Solid State Sci, Tempe, AZ 85287 USA
关键词
D O I
10.1103/PhysRevLett.88.206102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two compounds SiC and AlN, normally insoluble in each other below similar to2000 degreesC , are synthesized as a single-phase solid-solution thin film by molecular beam epitaxy at 750 degreesC. The growth of epitaxial SiCAlN films with hexagonal structure takes place on 6H-SiC(0001) substrates. Two structural models for the hexagonal SiCAlN films are constructed based on first-principles total-energy density functional theory calculations, each showing agreement with the experimental microstructures observed in cross-sectional transmission electron microscopy images. The predicted fundamental band gap is 3.2 eV for the stoichiometric SiCAlN film.
引用
收藏
页码:4 / 206102
页数:4
相关论文
共 50 条
  • [31] Emissivity effects in low-temperature epitaxial growth of Si and SiGe
    de Boer, WB
    Terpstra, D
    ADVANCES IN RAPID THERMAL PROCESSING, 1999, 99 (10): : 309 - 318
  • [32] TEMPERATURE DEPENDENT SWITCHING BEHAVIOR OF BFN THIN FILMS: A WIDE BAND GAP SEMICONDUCTOR
    Shah, Devang D.
    Mehta, P. K.
    Desai, M. S.
    Panchal, C. J.
    JOURNAL OF NANO- AND ELECTRONIC PHYSICS, 2011, 3 (01) : 330 - 340
  • [33] Dislocations and Triangular Defect in Low-temperature Halo-carbon Epitaxial Growth and Selective Epitaxial Growth
    Das, Hrishikesh
    Melnychuk, Galyna
    Koshka, Yaroslav
    SILICON CARBIDE AND RELATED MATERIALS 2008, 2009, 615-617 : 121 - 124
  • [34] (GaMg)N - New wide band gap semiconductor
    Suski, T
    Perlin, P
    Pietraszko, A
    Leszczynski, M
    Bockowski, M
    Grzegory, I
    Porowski, S
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1999, 176 (01): : 343 - 346
  • [35] Wide band gap semiconductor reliability : Status and trends
    Delage, SL
    Dua, C
    MICROELECTRONICS RELIABILITY, 2003, 43 (9-11) : 1705 - 1712
  • [36] (GaMg)N - new wide band gap semiconductor
    High Pressure Res. Center Unipress, ul. Sokolowska 29/37, PL-01-142 Warszawa, Poland
    不详
    Phys Status Solidi A, 1 (343-346):
  • [37] Wide Band Gap Semiconductor Optoelectronic Materials and Their Applications
    Ye Zhizhen
    Wang Fengzhi
    Chen Fang
    Lu Yangdan
    ACTA OPTICA SINICA, 2022, 42 (17)
  • [38] Wide band-gap power semiconductor devices
    Millan, J.
    IET CIRCUITS DEVICES & SYSTEMS, 2007, 1 (05) : 372 - 379
  • [39] Wide Band Gap Semiconductor Devices for Power Electronics
    Millan, Jose
    Godignon, Philippe
    Perez-Tomas, Amador
    AUTOMATIKA, 2012, 53 (02) : 107 - 116
  • [40] Synthesis and property study of nanoparticle quaternary semiconductor SiCAlN films with co-sputtering under lower temperature
    Huang, SY
    Xu, S
    Long, JD
    Dai, ZH
    Sun, YP
    SURFACE REVIEW AND LETTERS, 2005, 12 (03) : 397 - 400