Global Identification of Wind Turbines Using a Hammerstein Identification Method

被引:45
|
作者
van der Veen, Gijs [1 ]
van Wingerden, Jan-Willem [1 ]
Verhaegen, Michel [1 ]
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, Fac Mech Maritime & Mat Engn, NL-2628 CD Delft, Netherlands
关键词
Aerodynamic coefficients; closed-loop subspace identification; Hammerstein systems; multivariate splines; wind energy; SUBSPACE MODEL IDENTIFICATION; ALGORITHMS; SYSTEMS;
D O I
10.1109/TCST.2012.2205929
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this brief, we present a novel methodology to obtain a nonlinear data-driven model of a wind turbine. We have previously shown that the elementary dynamics of wind turbines can be represented in the form of a multivariable closed-loop Hammerstein structure, where the nonlinear mappings consist of the torque and thrust coefficients. Hammerstein systems consist of a static nonlinearity followed by a linear, time-invariant dynamic subsystem. The dynamic subsystem is identified using a new closed-loop subspace method. The nonlinearity is described using a recently developed regression framework for multivariate splines. We further propose a separable least-squares framework for recovery of the low-rank structure between the nonlinearity and the linear time-invariant system. The method is applied to a detailed simulation of the three-bladed NREL controls advanced research turbine.
引用
收藏
页码:1471 / 1478
页数:8
相关论文
共 50 条
  • [41] Modal identification of time-varying systems using simulated responses on wind turbines
    Bertha, M.
    Rios, J. P. Mayorga
    Golinval, J-C
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2012) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2012), 2012, : 4285 - 4296
  • [42] Gear Parameter Identification in Wind Turbines Using Diagnostic Analysis of Gearbox Vibration Signals
    Sawalhi, Nader
    Randall, Robert B.
    ADVANCES IN CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS, 2014, : 273 - 285
  • [43] An improved Hammerstein system identification method using Stein Variational Inference and sampling technology
    Zhang, Limin
    Jin, Di
    Zhao, Jia
    JOURNAL OF PROCESS CONTROL, 2023, 124 : 25 - 35
  • [44] Identification of a Hammerstein Model for Wing Flutter Analysis Using CFD Data and Correlation Method
    Lum, Kai-Yew
    Lai, Kwok Leung
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 1314 - 1319
  • [45] MODELING AND IDENTIFICATION OF DIESEL-WIND TURBINES SYSTEMS FOR WIND PENETRATION ASSESSMENT
    MALATESTAS, PB
    PAPADOPOULOS, MP
    STAVRAKAKIS, G
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1993, 8 (03) : 1091 - 1097
  • [46] Consistent Identification of Hammerstein Systems Using an Ersatz Nonlinearity
    Ali, Asad A.
    D'Amato, A. M.
    Holzel, M. S.
    Kukreja, S. L.
    Bernstein, Dennis S.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 1242 - 1246
  • [47] Nonlinear Hammerstein model identification using Genetic Algorithm
    Akramizadeh, A
    Farjami, AA
    Khaloozadeh, H
    2002 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE SYSTEMS, PROCEEDINGS, 2002, : 351 - 356
  • [48] Parameter identification of Hammerstein models using elimination theory
    Wang, Kaiyu
    Bodson, Marc
    Chiasson, John
    Tolbert, Leon M.
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 3444 - 3449
  • [49] Identification of Hammerstein Systems Using Input Amplitude Multiplexing
    Coffer, Benjamin J.
    Aljanaideh, Khaled
    Bernstein, Dennis S.
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 3930 - 3935
  • [50] Hammerstein system identification using nuclear norm minimization
    Han, Younghee
    de Callafon, Raymond A.
    AUTOMATICA, 2012, 48 (09) : 2189 - 2193