An improved Hammerstein system identification method using Stein Variational Inference and sampling technology

被引:4
|
作者
Zhang, Limin [1 ,2 ]
Jin, Di [2 ]
Zhao, Jia [3 ]
机构
[1] Hengshui Univ, Dept Math & Comp Sci, Hengshui City 053000, Peoples R China
[2] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300072, Peoples R China
[3] Changchun Inst Technol, Sch Comp Technol & Engn, Changchun 130012, Peoples R China
关键词
Hammerstein system; Parameters identification; Stein variational inference; Reversible jump markov chain monte carlo; CONVERGENCE; ALGORITHM;
D O I
10.1016/j.jprocont.2023.02.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the identification of the Hammerstein system with immeasurable process noise. The complexity of the Hammerstein system makes it difficult to obtain accurate mathematical expressions of the parameters, or even impossible to obtain accurate mathematical expressions at all. In this contribution, we cast the Hammerstein system parameter identification problem as a posterior parameter estimation problem and take a sampling and Stein variational inference viewpoint to solve it. Improved Stein variational gradient descent(ISVGD)algorithm is proposed in posterior parameter calculation. Compared with other methods, not only the prior distribution of parameters but also the proposal distribution of parameters is considered. In other words, The posterior information is enriched and the parameter identification accuracy is improved. At the same time, ISVGD and reversible jump markov chain monte carlo (RJMCMC) algorithms are used (called ISVGD-RJMCMC algorithm) in the structure detection problem. In the algorithm, the correct basis function number k can be found in the parameter estimation. It tends to be accurate but is slow to converge. Three simulation examples were given to demonstrate the proposed algorithm's effectiveness. Furthermore, the performances of these approaches were analyzed, including parameter estimation accuracy and error, system order estimation and parameter convergence analysis.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页码:25 / 35
页数:11
相关论文
共 50 条
  • [1] Improved system identification method for Hammerstein-Wiener processes
    Sung, Su Whan
    Je, Cheol Ho
    Lee, Jietae
    Lee, Dong Hyun
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2008, 25 (04) : 631 - 636
  • [2] Improved system identification method for Hammerstein-Wiener processes
    Su Whan Sung
    Cheol Ho Je
    Jietae Lee
    Dong Hyun Lee
    Korean Journal of Chemical Engineering, 2008, 25 : 631 - 636
  • [3] An Over-Sampling Amplitude-Limited Variational Bayesian Method for the Identification of Hammerstein Model
    Xu, Baochang
    Yuan, Likun
    Wang, Yaxin
    IEEE ACCESS, 2020, 8 : 224702 - 224711
  • [4] IMPROVED ADAPTIVE IMPORTANCE SAMPLING BASED ON VARIATIONAL INFERENCE
    Dowling, Matthew
    Nassar, Josue
    Djuric, Petar M.
    Bugallo, Monica F.
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 1632 - 1636
  • [5] Identification of MISO Hammerstein system using sparse multiple kernel-based hierarchical mixture prior and variational Bayesian inference
    Chen, Xiaolong
    Chai, Yi
    Liu, Qie
    Huang, Pengfei
    Fan, Linchuan
    ISA TRANSACTIONS, 2023, 137 : 323 - 338
  • [6] Sparse Bayesian Nonlinear System Identification Using Variational Inference
    Jacobs, William R.
    Baldacchino, Tara
    Dodd, Tony
    Anderson, Sean R.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (12) : 4172 - 4187
  • [7] Recursive Identification of the Hammerstein Model Based on the Variational Bayes Method
    Dokoupil, Jakub
    Vaclavek, Pavel
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 1586 - 1591
  • [8] System identification method for Hammerstein processes
    Sung, SW
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (17) : 4295 - 4302
  • [9] An improved method for Wiener-Hammerstein system identification based on the Fractional Approach
    Giordano, Giuseppe
    Gros, Sebastien
    Sjoberg, Jonas
    AUTOMATICA, 2018, 94 : 349 - 360
  • [10] SYSTEM IDENTIFICATION USING HAMMERSTEIN MODEL
    Mete, Selcuk
    Ozer, Saban
    Zorlu, Hasan
    2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, : 1303 - 1306