An improved Hammerstein system identification method using Stein Variational Inference and sampling technology

被引:4
|
作者
Zhang, Limin [1 ,2 ]
Jin, Di [2 ]
Zhao, Jia [3 ]
机构
[1] Hengshui Univ, Dept Math & Comp Sci, Hengshui City 053000, Peoples R China
[2] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300072, Peoples R China
[3] Changchun Inst Technol, Sch Comp Technol & Engn, Changchun 130012, Peoples R China
关键词
Hammerstein system; Parameters identification; Stein variational inference; Reversible jump markov chain monte carlo; CONVERGENCE; ALGORITHM;
D O I
10.1016/j.jprocont.2023.02.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the identification of the Hammerstein system with immeasurable process noise. The complexity of the Hammerstein system makes it difficult to obtain accurate mathematical expressions of the parameters, or even impossible to obtain accurate mathematical expressions at all. In this contribution, we cast the Hammerstein system parameter identification problem as a posterior parameter estimation problem and take a sampling and Stein variational inference viewpoint to solve it. Improved Stein variational gradient descent(ISVGD)algorithm is proposed in posterior parameter calculation. Compared with other methods, not only the prior distribution of parameters but also the proposal distribution of parameters is considered. In other words, The posterior information is enriched and the parameter identification accuracy is improved. At the same time, ISVGD and reversible jump markov chain monte carlo (RJMCMC) algorithms are used (called ISVGD-RJMCMC algorithm) in the structure detection problem. In the algorithm, the correct basis function number k can be found in the parameter estimation. It tends to be accurate but is slow to converge. Three simulation examples were given to demonstrate the proposed algorithm's effectiveness. Furthermore, the performances of these approaches were analyzed, including parameter estimation accuracy and error, system order estimation and parameter convergence analysis.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页码:25 / 35
页数:11
相关论文
共 50 条
  • [21] Bayesian adaptation of chaos representations using variational inference and sampling on geodesics
    Tsilifis, P.
    Ghanem, R. G.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2217):
  • [22] An Identification Algorithm for Hammerstein Systems Using Subspace Method
    Jalaleddini, Kian
    Kearney, Robert E.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 4793 - 4797
  • [23] Hammerstein system identification using nuclear norm minimization
    Han, Younghee
    de Callafon, Raymond A.
    AUTOMATICA, 2012, 48 (09) : 2189 - 2193
  • [24] NONLINEAR-SYSTEM IDENTIFICATION USING THE HAMMERSTEIN MODEL
    BILLINGS, SA
    FAKHOURI, SY
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1979, 10 (05) : 567 - 578
  • [25] A Comparison Study of System Identification Using Hammerstein Model
    Ozer, Saban
    Zorlu, Hasan
    Mete, Selcuk
    2015 11TH INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION TECHNOLOGY (IIT), 2015, : 367 - 372
  • [26] Non-Gaussian Parameter Inference for Hydrogeological Models Using Stein Variational Gradient Descent
    Ramgraber, Maximilian
    Weatherl, Robin
    Blumensaat, Frank
    Schirmer, Mario
    WATER RESOURCES RESEARCH, 2021, 57 (04)
  • [27] Recursive maximum likelihood method for the identification of Hammerstein ARMAX system
    Ma, Liang
    Liu, Xinggao
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (13-14) : 6523 - 6535
  • [28] On a Method of Identification of the Nonlinear Static Characteristic of a Hammerstein System.
    Niedzwiecki, Maciej
    Archiwum Automatyki i Telemechaniki, 1980, 25 (01): : 51 - 62
  • [29] Improved identification of Hammerstein plants using new CPSO and IPSO algorithms
    Nanda, Satyasai Jagannath
    Panda, Ganapati
    Majhi, Babita
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (10) : 6818 - 6831
  • [30] Nonlinear Hammerstein Model Identification of SOFC using Improved GEO Algorithm
    Huo, Haibo
    Wu, Yanxiang
    Wang, Weihong
    Kuang, Xinghong
    Gan, Shihong
    Liu, Yuqing
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 5767 - 5773