An improved Hammerstein system identification method using Stein Variational Inference and sampling technology

被引:4
|
作者
Zhang, Limin [1 ,2 ]
Jin, Di [2 ]
Zhao, Jia [3 ]
机构
[1] Hengshui Univ, Dept Math & Comp Sci, Hengshui City 053000, Peoples R China
[2] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300072, Peoples R China
[3] Changchun Inst Technol, Sch Comp Technol & Engn, Changchun 130012, Peoples R China
关键词
Hammerstein system; Parameters identification; Stein variational inference; Reversible jump markov chain monte carlo; CONVERGENCE; ALGORITHM;
D O I
10.1016/j.jprocont.2023.02.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the identification of the Hammerstein system with immeasurable process noise. The complexity of the Hammerstein system makes it difficult to obtain accurate mathematical expressions of the parameters, or even impossible to obtain accurate mathematical expressions at all. In this contribution, we cast the Hammerstein system parameter identification problem as a posterior parameter estimation problem and take a sampling and Stein variational inference viewpoint to solve it. Improved Stein variational gradient descent(ISVGD)algorithm is proposed in posterior parameter calculation. Compared with other methods, not only the prior distribution of parameters but also the proposal distribution of parameters is considered. In other words, The posterior information is enriched and the parameter identification accuracy is improved. At the same time, ISVGD and reversible jump markov chain monte carlo (RJMCMC) algorithms are used (called ISVGD-RJMCMC algorithm) in the structure detection problem. In the algorithm, the correct basis function number k can be found in the parameter estimation. It tends to be accurate but is slow to converge. Three simulation examples were given to demonstrate the proposed algorithm's effectiveness. Furthermore, the performances of these approaches were analyzed, including parameter estimation accuracy and error, system order estimation and parameter convergence analysis.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页码:25 / 35
页数:11
相关论文
共 50 条
  • [41] A nonlinear recursive instrumental variables identification method of Hammerstein ARMAX system
    Liang Ma
    Xinggao Liu
    Nonlinear Dynamics, 2015, 79 : 1601 - 1613
  • [42] CONTROLLER-DESIGN ORIENTED MODEL IDENTIFICATION METHOD FOR HAMMERSTEIN SYSTEM
    LANG, ZQ
    AUTOMATICA, 1993, 29 (03) : 767 - 771
  • [43] Improved efficiency with variational Monte Carlo using two level sampling
    Dewing, M
    JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (13): : 5123 - 5125
  • [44] An Identification Algorithm for Hammerstein-Wiener System with Dead Zone Input Nonlinearity Using Gradient Method
    Hong, HyokChan
    Mao, Zhizhong
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 2511 - 2514
  • [45] An improved systematic variational method: application to a nuclear system
    Mancini, JD
    Fessatidis, V
    Haider, Q
    Bowen, SP
    PHYSICS LETTERS A, 2000, 274 (3-4) : 170 - 173
  • [46] Variational inference-based EM for quantized FIR system parameter identification
    Wang, Xiaoxu
    Li, Chaofeng
    Zhang, Jun
    Zhang, Qianyun
    Hu, Jinwen
    2018 IEEE 14TH INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2018, : 636 - 640
  • [47] Parallel Hammerstein Models Identification using Sine Sweeps and the Welch Method
    Roggerone, Vincent
    Rebillat, Marc
    Corteel, Etienne
    IFAC PAPERSONLINE, 2017, 50 (01): : 14040 - 14045
  • [48] Improved constructive learning algorithms for fuzzy inference system identification
    Alimi, Sonia
    Chtourou, Mohamed
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2007, 2 (04) : 322 - 331
  • [49] A method for the identification of solid oxide fuel cells using a Hammerstein model
    Jurado, F
    JOURNAL OF POWER SOURCES, 2006, 154 (01) : 145 - 152
  • [50] Experimental Study on Improved Differential Evolution for System Identification of Hammerstein Model and Wiener Model
    Xiong, Weili
    Chen, Minfang
    Yao, Le
    Xu, Baoguo
    PROCEEDINGS OF 2013 CHINESE INTELLIGENT AUTOMATION CONFERENCE: INTELLIGENT AUTOMATION, 2013, 254 : 75 - 85