The local and global existence of solutions for a generalized Camassa-Holm equation

被引:0
|
作者
Lai, Shao Yong [1 ]
Li, Nan [1 ]
Zhang, Jian [2 ]
机构
[1] Southwestern Univ Finance & Econ, Dept Math, Chengdu 610074, Peoples R China
[2] Sichuan Normal Univ, Dept Math, Chengdu 610066, Peoples R China
关键词
Existence of global solutions; Camassa-Holm type equation; Pseudoparabolic regularization method; SHALLOW-WATER EQUATION; DEGASPERIS-PROCESI EQUATION; TRAVELING-WAVE SOLUTIONS; BLOW-UP PHENOMENA; WELL-POSEDNESS; WEAK SOLUTIONS; INTEGRABLE EQUATION; SCATTERING PROBLEM; PEAKON SOLUTIONS; DGH EQUATION;
D O I
10.1007/s10114-013-1419-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A fully nonlinear generalization of the Camassa-Holm equation is investigated. Using the pseudoparabolic regularization technique, its local well-posedness in Sobolev space H (s) (a"e) with is established via a limiting procedure. Provided that the initial momentum (1 -a, (x) (2) )u (0) satisfies the sign condition, u (0) a H (s) (a"e) and u (0) epsilon L (1)(a"e), the existence and uniqueness of global solutions for the equation are shown to be true in the space C([0,a);H (s) (a"e)) a (c) C (1)([0,g8);H (s-1)(a"e)).
引用
下载
收藏
页码:757 / 776
页数:20
相关论文
共 50 条