The local and global existence of solutions for a generalized Camassa-Holm equation

被引:0
|
作者
Lai, Shao Yong [1 ]
Li, Nan [1 ]
Zhang, Jian [2 ]
机构
[1] Southwestern Univ Finance & Econ, Dept Math, Chengdu 610074, Peoples R China
[2] Sichuan Normal Univ, Dept Math, Chengdu 610066, Peoples R China
关键词
Existence of global solutions; Camassa-Holm type equation; Pseudoparabolic regularization method; SHALLOW-WATER EQUATION; DEGASPERIS-PROCESI EQUATION; TRAVELING-WAVE SOLUTIONS; BLOW-UP PHENOMENA; WELL-POSEDNESS; WEAK SOLUTIONS; INTEGRABLE EQUATION; SCATTERING PROBLEM; PEAKON SOLUTIONS; DGH EQUATION;
D O I
10.1007/s10114-013-1419-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A fully nonlinear generalization of the Camassa-Holm equation is investigated. Using the pseudoparabolic regularization technique, its local well-posedness in Sobolev space H (s) (a"e) with is established via a limiting procedure. Provided that the initial momentum (1 -a, (x) (2) )u (0) satisfies the sign condition, u (0) a H (s) (a"e) and u (0) epsilon L (1)(a"e), the existence and uniqueness of global solutions for the equation are shown to be true in the space C([0,a);H (s) (a"e)) a (c) C (1)([0,g8);H (s-1)(a"e)).
引用
下载
收藏
页码:757 / 776
页数:20
相关论文
共 50 条
  • [21] Global existence of solution to the Camassa-Holm equation
    Liu, YQ
    Wang, WK
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (05) : 945 - 953
  • [22] Global existence of dissipative solutions to the Camassa-Holm equation with transport noise
    Galimberti, L.
    Holden, H.
    Karlsen, K. H.
    Pang, P. H. C.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 387 : 1 - 103
  • [23] EXISTENCE AND UNIQUENESS OF GLOBAL WEAK SOLUTIONS OF THE CAMASSA-HOLM EQUATION WITH A FORCING
    Zhu, Shihui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (09) : 5201 - 5221
  • [24] CLASSICAL SOLUTIONS OF THE GENERALIZED CAMASSA-HOLM EQUATION
    Holmes, John
    Thompson, Ryan C.
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2017, 22 (5-6) : 339 - 362
  • [25] Global solutions for the modified Camassa-Holm equation
    Ji, Shuguan
    Zhou, Yonghui
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (10):
  • [26] Global conservative solutions of the Camassa-Holm equation
    Bressan, Alberto
    Constantin, Adrian
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (02) : 215 - 239
  • [27] Global dissipative solutions of the Camassa-Holm equation
    Bressan, Alberto
    Constantin, Adrian
    ANALYSIS AND APPLICATIONS, 2007, 5 (01) : 1 - 27
  • [28] Global weak solutions to the Camassa-Holm equation
    Guo, Zhenhua
    Jiang, Mina
    Wang, Zhian
    Zheng, Gao-Feng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 21 (03) : 883 - 906
  • [29] The Global Weak Solution for a Generalized Camassa-Holm Equation
    Lai, Shaoyong
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [30] On solutions of the Camassa-Holm equation
    Johnson, RS
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2035): : 1687 - 1708