DeepBehavior: A Deep Learning Toolbox for Automated Analysis of Animal and Human Behavior Imaging Data

被引:65
|
作者
Arac, Ahmet [1 ,2 ]
Zhao, Pingping [1 ,2 ]
Dobkin, Bruce H. [1 ,2 ]
Carmichael, S. Thomas [1 ,2 ]
Golshani, Peyman [1 ,2 ,3 ,4 ]
机构
[1] Dept Neurol, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Semel Inst Neurosci & Human Behav, Los Angeles, CA 90024 USA
[4] West Los Angeles Vet Affairs Med Ctr, Los Angeles, CA USA
关键词
behavior analysis; deep learning; motor behavior; social behavior; human kinematics; IMPAIRMENTS; MOVEMENTS; RECOVERY;
D O I
10.3389/fnsys.2019.00020
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Detailed behavioral analysis is key to understanding the brain-behavior relationship. Here, we present deep learning-based methods for analysis of behavior imaging data in mice and humans. Specifically, we use three different convolutional neural network architectures and five different behavior tasks in mice and humans and provide detailed instructions for rapid implementation of these methods for the neuroscience community. We provide examples of three dimensional (3D) kinematic analysis in the food pellet reaching task in mice, three-chamber test in mice, social interaction test in freely moving mice with simultaneous miniscope calcium imaging, and 3D kinematic analysis of two upper extremity movements in humans (reaching and alternating pronation/supination). We demonstrate that the transfer learning approach accelerates the training of the network when using images from these types of behavior video recordings. We also provide code for post-processing of the data after initial analysis with deep learning. Our methods expand the repertoire of available tools using deep learning for behavior analysis by providing detailed instructions on implementation, applications in several behavior tests, and post-processing methods and annotated code for detailed behavior analysis. Moreover, our methods in human motor behavior can be used in the clinic to assess motor function during recovery after an injury such as stroke.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Deep Learning Human Mind for Automated Visual Classification
    Spampinato, C.
    Palazzo, S.
    Kavasidis, I.
    Giordano, D.
    Souly, N.
    Shah, M.
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4503 - 4511
  • [32] Deep and Automated SDN Data Plane Analysis
    Saied, Wejdene
    Ben Souayeh, Nihel Ben Youssef
    Saadaoui, Amina
    Bouhoula, Adel
    2019 27TH INTERNATIONAL CONFERENCE ON SOFTWARE, TELECOMMUNICATIONS AND COMPUTER NETWORKS (SOFTCOM), 2019, : 24 - 29
  • [33] A deep learning paradigm for medical imaging data
    Chen, Jinyang
    Park, Cheolwoo
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [34] Deep Learning for Automated Outcome Prediction in Oropharyngeal Cancer from Tumor and Lymph Node Imaging Data
    Ye, Z.
    Likitlersuang, J.
    Zeng, J.
    Plana, D.
    Mak, R. H.
    Aerts, H.
    Haibe-Kains, B.
    Margalit, D. N.
    Schoenfeld, J. D.
    Tishler, R. B.
    Kann, B. H.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E325 - E325
  • [35] Gesture ToolBox: Touchless Human-Machine Interface Using Deep Learning
    Lesnes-Cuisiniez, Elann
    Flores, Jesus Zegarra
    Radoux, Jean-Pierre
    KI 2017: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2017, 10505 : 323 - 329
  • [36] Automated Stoichiometry Analysis of Single-Molecule Fluorescence Imaging Traces via Deep Learning
    Xu, Jiachao
    Qin, Gege
    Luo, Fang
    Wang, Lina
    Zhao, Rong
    Li, Nan
    Yuan, Jinghe
    Fang, Xiaohong
    Journal of the American Chemical Society, 2019,
  • [37] Automated Stoichiometry Analysis of Single-Molecule Fluorescence Imaging Traces via Deep Learning
    Xu, Jiachao
    Qin, Gege
    Luo, Fang
    Wang, Lina
    Zhao, Rong
    Li, Nan
    Yuan, Jinghe
    Fang, Xiaohong
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (17) : 6976 - 6985
  • [38] Application of deep learning methods to analysis of imaging atmospheric Cherenkov telescopes data
    Shilon, I.
    Kraus, M.
    Buechele, M.
    Egberts, K.
    Fischer, T.
    Holch, T. L.
    Lohse, T.
    Schwanke, U.
    Steppa, C.
    Funk, S.
    ASTROPARTICLE PHYSICS, 2019, 105 : 44 - 53
  • [39] A review on deep learning applications in highly multiplexed tissue imaging data analysis
    Zidane, Mohammed
    Makky, Ahmad
    Bruhns, Matthias
    Rochwarger, Alexander
    Babaei, Sepideh
    Claassen, Manfred
    Schuerch, Christian M.
    FRONTIERS IN BIOINFORMATICS, 2023, 3
  • [40] Research progress of deep learning applications in mass spectrometry imaging data analysis
    Huang, Dongdong
    Liu, Xinyu
    Xu, Guowang
    CHINESE JOURNAL OF CHROMATOGRAPHY, 2024, 42 (07) : 669 - 680