DeepBehavior: A Deep Learning Toolbox for Automated Analysis of Animal and Human Behavior Imaging Data

被引:65
|
作者
Arac, Ahmet [1 ,2 ]
Zhao, Pingping [1 ,2 ]
Dobkin, Bruce H. [1 ,2 ]
Carmichael, S. Thomas [1 ,2 ]
Golshani, Peyman [1 ,2 ,3 ,4 ]
机构
[1] Dept Neurol, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Semel Inst Neurosci & Human Behav, Los Angeles, CA 90024 USA
[4] West Los Angeles Vet Affairs Med Ctr, Los Angeles, CA USA
关键词
behavior analysis; deep learning; motor behavior; social behavior; human kinematics; IMPAIRMENTS; MOVEMENTS; RECOVERY;
D O I
10.3389/fnsys.2019.00020
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Detailed behavioral analysis is key to understanding the brain-behavior relationship. Here, we present deep learning-based methods for analysis of behavior imaging data in mice and humans. Specifically, we use three different convolutional neural network architectures and five different behavior tasks in mice and humans and provide detailed instructions for rapid implementation of these methods for the neuroscience community. We provide examples of three dimensional (3D) kinematic analysis in the food pellet reaching task in mice, three-chamber test in mice, social interaction test in freely moving mice with simultaneous miniscope calcium imaging, and 3D kinematic analysis of two upper extremity movements in humans (reaching and alternating pronation/supination). We demonstrate that the transfer learning approach accelerates the training of the network when using images from these types of behavior video recordings. We also provide code for post-processing of the data after initial analysis with deep learning. Our methods expand the repertoire of available tools using deep learning for behavior analysis by providing detailed instructions on implementation, applications in several behavior tests, and post-processing methods and annotated code for detailed behavior analysis. Moreover, our methods in human motor behavior can be used in the clinic to assess motor function during recovery after an injury such as stroke.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Analysis of a Deep Learning Synchrotron Imaging Model for Segmentation and Classification of Stroke Animal Models
    Won H.
    Kim S.
    Kim E.B.
    Lee O.
    Transactions of the Korean Institute of Electrical Engineers, 2023, 72 (07): : 863 - 871
  • [22] The GridCAT: A Toolbox for Automated Analysis of Human Grid Cell Codes in fMRI
    Stangl, Matthias
    Shine, Jonathan
    Wolbers, Thomas
    FRONTIERS IN NEUROINFORMATICS, 2017, 11
  • [23] Developing an automated pipeline for quantifying animal pigmentation using deep learning
    Alvarado, S. G.
    Krupakar, H.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2020, 60 : E5 - E5
  • [24] Deep learning toolbox for automated enhancement, segmentation, and graphing of cortical optical coherence tomography microangiograms
    Stefan, Sabina
    Lee, Jonghwan
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (12) : 7325 - 7342
  • [25] Towards an automated data cleaning with deep learning in CRESST
    G. Angloher
    S. Banik
    D. Bartolot
    G. Benato
    A. Bento
    A. Bertolini
    R. Breier
    C. Bucci
    J. Burkhart
    L. Canonica
    A. D’Addabbo
    S. Di Lorenzo
    L. Einfalt
    A. Erb
    F. v. Feilitzsch
    N. Ferreiro Iachellini
    S. Fichtinger
    D. Fuchs
    A. Fuss
    A. Garai
    V. M. Ghete
    S. Gerster
    P. Gorla
    P. V. Guillaumon
    S. Gupta
    D. Hauff
    M. Ješkovský
    J. Jochum
    M. Kaznacheeva
    A. Kinast
    H. Kluck
    H. Kraus
    M. Lackner
    A. Langenkämper
    M. Mancuso
    L. Marini
    L. Meyer
    V. Mokina
    A. Nilima
    M. Olmi
    T. Ortmann
    C. Pagliarone
    L. Pattavina
    F. Petricca
    W. Potzel
    P. Povinec
    F. Pröbst
    F. Pucci
    F. Reindl
    D. Rizvanovic
    The European Physical Journal Plus, 138
  • [26] Towards an automated data cleaning with deep learning in CRESST
    Angloher, G.
    Banik, S.
    Bartolot, D.
    Benato, G.
    Bento, A.
    Bertolini, A.
    Breier, R.
    Bucci, C.
    Burkhart, J.
    Canonica, L.
    D'Addabbo, A.
    Di Lorenzo, S.
    Einfalt, L.
    Erb, A.
    Feilitzsch, F. V.
    Iachellini, N. Ferreiro
    Fichtinger, S.
    Fuchs, D.
    Fuss, A.
    Garai, A.
    Ghete, V. M.
    Gerster, S.
    Gorla, P.
    Guillaumon, P. V.
    Gupta, S.
    Hauff, D.
    Jeskovsky, M.
    Jochum, J.
    Kaznacheeva, M.
    Kinast, A.
    Kluck, H.
    Kraus, H.
    Lackner, M.
    Langenkaemper, A.
    Mancuso, M.
    Marini, L.
    Meyer, L.
    Mokina, V.
    Nilima, A.
    Olmi, M.
    Ortmann, T.
    Pagliarone, C.
    Pattavina, L.
    Petricca, F.
    Potzel, W.
    Povinec, P.
    Proebst, F.
    Pucci, F.
    Reindl, F.
    Rizvanovic, D.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (01):
  • [27] Automated Classification Analysis of Geological Structures Based on Images Data and Deep Learning Model
    Zhang, Ye
    Wang, Gang
    Li, Mingchao
    Han, Shuai
    APPLIED SCIENCES-BASEL, 2018, 8 (12):
  • [28] Automated monitoring of insulation by ultraviolet imaging employing deep learning
    Rodrigues, Gustavo Araga
    Araujo, Bruno Vinicius Silveira
    de Oliveira, Johnny Herbert Paixa
    Xavier, George Victor Rocha
    Lebre, Ulisses Daniel Enes de Souza
    Cordeiro, Charles Antony
    Freire, Eduardo Oliveira
    Ferreira, Tarso Vilela
    MEASUREMENT, 2025, 242
  • [29] Deep Learning-Based Automated Imaging Classification of ADPKD
    Kim, Youngwoo
    Bu, Seonah
    Tao, Cheng
    Bae, Kyongtae T.
    KIDNEY INTERNATIONAL REPORTS, 2024, 9 (06): : 1802 - 1809
  • [30] ECOLOGICAL ANALYSIS OF HUMAN AND ANIMAL BEHAVIOR
    TINBERGE.N
    EXPERIENTIA, 1970, 26 (04): : 447 - &