Stochastic Optimal Control of DC Pension Fund under the Fractional Brownian Motion

被引:0
|
作者
Gao, Jianwei [1 ]
机构
[1] North China Elect Power Univ, Sch Econ & Management, Beijing 102206, Peoples R China
来源
关键词
Dalgaard-Strulik Stochastic optimal control; Fractional Brownian motion; Defined-contribution pension scheme; Lagrange multiplier; GUARANTEE;
D O I
10.12785/amis/070221
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers that the goal of the fund manager is to minimize the expected utility loss function, and the noises involved in the dynamics of some wealth are fractional Brownian motions with short-range dependence. By applying Hamilton and Lagrange multiplier, the stochastic optimal control problem is converted into a non-random optimization. Furthermore, based on deterministic optimal control principle, it is obtained the explicit solution of the optimal strategies via moment equations. Finally, it is presented a simulation to analyze the dynamic behavior of the optimal portfolio strategy influenced by the orders of fractional Brownian motions.
引用
收藏
页码:571 / 578
页数:8
相关论文
共 50 条
  • [31] Stochastic integration with respect to fractional Brownian motion
    Carmona, P
    Coutin, L
    Montseny, G
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (01): : 27 - 68
  • [32] Stochastic evolution equations with fractional Brownian motion
    S. Tindel
    C.A. Tudor
    F. Viens
    [J]. Probability Theory and Related Fields, 2003, 127 : 186 - 204
  • [33] Stochastic integration with respect to fractional Brownian motion
    Carmona, P
    Coutin, L
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (03): : 231 - 236
  • [34] Stochastic integration for tempered fractional Brownian motion
    Meerschaert, Mark M.
    Sabzikar, Farzad
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (07) : 2363 - 2387
  • [35] Stochastic fractional differential inclusion driven by fractional Brownian motion
    Hachemi, Rahma Yasmina Moulay
    Guendouzi, Toufik
    [J]. RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2023, 31 (04) : 303 - 313
  • [36] Fractional stochastic Volterra equation perturbed by fractional Brownian motion
    Zhang, Yinghan
    Yang, Xiaoyuan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 20 - 36
  • [37] Optimal Pension Fund Management with Foreign Investment in a Stochastic Environment
    Tang, Mei-Ling
    Wu, Ting-Pin
    Hung, Ming-Chin
    [J]. MATHEMATICS, 2022, 10 (14)
  • [38] Stochastic pension fund control in the presence of Poisson jumps
    Ngwira, Bernard
    Gerrard, Russell
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2007, 40 (02): : 283 - 292
  • [39] On the Control Problem for Solution of Stochastic Differential Equation with Additive Fractional Brownian Motion
    Knopov, P. S.
    Derieva, E. N.
    [J]. JOURNAL OF AUTOMATION AND INFORMATION SCIENCES, 2010, 42 (07) : 78 - 83
  • [40] Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund
    Boulier, JF
    Huang, SJ
    Taillard, G
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2001, 28 (02): : 173 - 189