Brill-Noether theory of squarefree modules supported on a graph

被引:0
|
作者
Floystad, Gunnar [1 ]
Lohne, Henning [1 ]
机构
[1] Inst Matemat, N-5008 Bergen, Norway
关键词
ALEXANDER DUALITY;
D O I
10.1016/j.jpaa.2012.09.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the analogy between squarefree Cohen-Macaulay modules supported on a graph and line bundles on a curve. We prove a Riemann-Roch theorem, we study the Jacobian and gonality of a graph, and we prove Clifford's theorem. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:803 / 818
页数:16
相关论文
共 50 条
  • [31] BRILL-NOETHER ALGORITHM AND GOPPA CODES
    LEBRIGAND, D
    RISLER, JJ
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1988, 116 (02): : 231 - 253
  • [32] Brill-Noether problems in higher dimensions
    Nakashima, Tohru
    FORUM MATHEMATICUM, 2008, 20 (01) : 145 - 161
  • [33] On the Brill-Noether problem for vector bundles
    Daskalopoulos, GD
    Wentworth, RA
    FORUM MATHEMATICUM, 1999, 11 (01) : 63 - 77
  • [34] Ulrich sheaves and higher-rank Brill-Noether theory
    Kulkarni, Rajesh S.
    Mustopa, Yusuf
    Shipman, Ian
    JOURNAL OF ALGEBRA, 2017, 474 : 166 - 179
  • [35] A generalized principal ideal theorem with an application to Brill-Noether theory
    Frauke Steffen
    Inventiones mathematicae, 1998, 132 : 73 - 89
  • [36] Severi varieties and Brill-Noether theory of curves on abelian surfaces
    Knutsen, Andreas Leopold
    Lelli-Chiesa, Margherita
    Mongardi, Giovanni
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 749 : 161 - 200
  • [37] BRILL-NOETHER THEORY FOR VECTOR-BUNDLES OF RANK 2
    BIGAS, MT
    TOHOKU MATHEMATICAL JOURNAL, 1991, 43 (01) : 123 - 126
  • [38] The Maximal Rank Conjecture and Rank Two Brill-Noether Theory
    Farkas, Gavril
    Ortega, Angela
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2011, 7 (04) : 1265 - 1295
  • [39] Brill-Noether Theory of Stable Vector Bundles on Ruled Surfaces
    Costa, L.
    Tarrio, Irene Macias
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (03)
  • [40] On the geometry and Brill-Noether theory of spanned vector bundles on curves
    Ballico, E
    Russo, B
    HIGHER DIMENSIONAL COMPLEX VARIETIES, 1996, : 23 - 38