Brill-Noether theory of squarefree modules supported on a graph

被引:0
|
作者
Floystad, Gunnar [1 ]
Lohne, Henning [1 ]
机构
[1] Inst Matemat, N-5008 Bergen, Norway
关键词
ALEXANDER DUALITY;
D O I
10.1016/j.jpaa.2012.09.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the analogy between squarefree Cohen-Macaulay modules supported on a graph and line bundles on a curve. We prove a Riemann-Roch theorem, we study the Jacobian and gonality of a graph, and we prove Clifford's theorem. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:803 / 818
页数:16
相关论文
共 50 条
  • [21] Deformations of covers, Brill-Noether theory, and wild ramification
    Osserman, B
    MATHEMATICAL RESEARCH LETTERS, 2005, 12 (04) : 483 - 491
  • [22] Global Brill-Noether theory over the Hurwitz space
    Larson, Eric
    Larson, Hannah
    Vogt, Isabel
    GEOMETRY & TOPOLOGY, 2025, 29 (01)
  • [23] Nonemptiness of Brill-Noether loci
    Brambila-Paz, L
    Mercat, V
    Newstead, PE
    Ongay, F
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2000, 11 (06) : 737 - 760
  • [24] BRILL-NOETHER THEORY FOR NONSPECIAL LINEAR-SYSTEMS
    COPPENS, M
    COMPOSITIO MATHEMATICA, 1995, 97 (1-2) : 17 - 27
  • [25] Vector-like pairs and Brill-Noether theory
    Watari, Taizan
    PHYSICS LETTERS B, 2016, 762 : 145 - 150
  • [26] BRILL-NOETHER THEORY FOR STABLE VECTOR-BUNDLES
    BIGAS, MTI
    DUKE MATHEMATICAL JOURNAL, 1991, 62 (02) : 385 - 400
  • [27] On the Brill-Noether theory for K3 surfaces
    Leyenson, Maxim
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (04): : 1486 - 1540
  • [28] Brill-Noether Theory on ℙ2 for Bundles with Many Sections
    Coskun, Izzet
    Huizenga, Jack
    Raha, Neelarnab
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2025, 2025 (06)
  • [29] Invariants of the Brill-Noether curve
    Castorena, Abel
    Martin, Alberto Lopez
    Bigas, Montserrat Teixidor I.
    ADVANCES IN GEOMETRY, 2017, 17 (01) : 39 - 52
  • [30] A tropical proof of the Brill-Noether Theorem
    Cools, Filip
    Draisma, Jan
    Payne, Sam
    Robeva, Elina
    ADVANCES IN MATHEMATICS, 2012, 230 (02) : 759 - 776