Worst-case multi-objective error estimation and adaptivity

被引:19
|
作者
van Brummelen, E. H. [1 ]
Zhuk, S. [2 ]
van Zwieten, G. J. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] IBM Res, Server 3, IBM Tech Campus, Dublin 15, Ireland
关键词
A-posterior error estimation; Worst-case multi-objective error estimation; Adaptive finite-element methods; FINITE-ELEMENT METHODS; FREE-BOUNDARY PROBLEMS; STATE ESTIMATION; ALGORITHM; MODELS; DOMAIN;
D O I
10.1016/j.cma.2016.10.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper introduces a new computational methodology for determining a-posteriori multi-objective error estimates for finite element approximations, and for constructing corresponding (quasi-)optimal adaptive refinements of finite-element spaces. As opposed to the classical goal-oriented approaches, which consider only a single objective functional, the presented methodology applies to general closed convex subsets of the dual space and constructs a worst-case error estimate of the finite-element approximation error. This worst-case multi-objective error estimate conforms to a dual-weighted residual, in which the dual solution is associated with an approximate supporting functional of the objective set at the approximation error. We regard both standard approximation errors and data-incompatibility errors associated with incompatibility of boundary data with the trace of the finite-element space. Numerical experiments are presented to demonstrate the efficacy of applying the proposed worst-case multi-objective error estimate in adaptive refinement procedures. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:723 / 743
页数:21
相关论文
共 50 条
  • [21] Competitive coevolutionary algorithm for robust multi-objective optimization: The worst case minimization
    Meneghini, Ivan Reinaido
    Guimaraes, Frederico Gadelha
    Gaspar-Cunha, Antonio
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 586 - 593
  • [22] Novel method for worst-case interconnect delay estimation
    Chen, B
    Yang, HZ
    Luo, R
    Wang, H
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2003, 50 (06) : 778 - 781
  • [23] Worst-case estimation for econometric models with unobservable components
    Esteban-Bravo, Mercedes
    Vidal-Sanz, Jose M.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (07) : 3330 - 3354
  • [24] Worst-case parameter estimation with bounded model uncertainties
    Chandrasekaran, S
    Golub, GH
    Gu, M
    Sayed, AH
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 171 - 175
  • [25] Worst-Case Execution Time Estimation for Numerical Controllers
    Susca, Mircea
    Mihaly, Vlad
    Morar, Dora
    Dobra, Petru
    PROCEEDINGS OF 2022 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS (AQTR 2022), 2022, : 401 - 406
  • [26] Worst-Case Analysis is Maximum-A-Posteriori Estimation
    Wu, Hongjun
    Wang, Di
    arXiv, 2023,
  • [27] Worst-Case Guarantees for Remote Estimation of an Uncertain Source
    Gagrani, Mukul
    Ouyang, Yi
    Rasouli, Mohammad
    Nayyar, Ashutosh
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (04) : 1794 - 1801
  • [28] Estimation of EMI Filter Performance for the "Worst-Case" System
    Drinovsky, Jiri
    Svacina, Jiri
    RADIOENGINEERING, 2006, 15 (04) : 16 - 21
  • [29] Adaptivity and error estimation
    Huerta, A
    Diez, P
    Rodriguez-Ferran, A
    SIMULATION OF MATERIALS PROCESSING: THEORY, METHODS AND APPLICATIONS, 1998, : 63 - 74
  • [30] Conditional central algorithms for worst-case estimation and filtering
    Garulli, A
    Vicino, A
    Zappa, G
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 2453 - 2458