Worst-case multi-objective error estimation and adaptivity

被引:19
|
作者
van Brummelen, E. H. [1 ]
Zhuk, S. [2 ]
van Zwieten, G. J. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] IBM Res, Server 3, IBM Tech Campus, Dublin 15, Ireland
关键词
A-posterior error estimation; Worst-case multi-objective error estimation; Adaptive finite-element methods; FINITE-ELEMENT METHODS; FREE-BOUNDARY PROBLEMS; STATE ESTIMATION; ALGORITHM; MODELS; DOMAIN;
D O I
10.1016/j.cma.2016.10.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper introduces a new computational methodology for determining a-posteriori multi-objective error estimates for finite element approximations, and for constructing corresponding (quasi-)optimal adaptive refinements of finite-element spaces. As opposed to the classical goal-oriented approaches, which consider only a single objective functional, the presented methodology applies to general closed convex subsets of the dual space and constructs a worst-case error estimate of the finite-element approximation error. This worst-case multi-objective error estimate conforms to a dual-weighted residual, in which the dual solution is associated with an approximate supporting functional of the objective set at the approximation error. We regard both standard approximation errors and data-incompatibility errors associated with incompatibility of boundary data with the trace of the finite-element space. Numerical experiments are presented to demonstrate the efficacy of applying the proposed worst-case multi-objective error estimate in adaptive refinement procedures. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:723 / 743
页数:21
相关论文
共 50 条
  • [11] Model selection via worst-case criterion for nonlinear bounded-error estimation
    Brahim-Belhouari, S
    Kieffer, M
    Fleury, G
    Jaulin, L
    Walter, É
    IMTC/99: PROCEEDINGS OF THE 16TH IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS. 1-3, 1999, : 1075 - 1080
  • [12] Model selection via worst-case criterion for nonlinear bounded-error estimation
    Brahim-Belhouari, S
    Kieffer, M
    Fleury, G
    Jaulin, L
    Walter, É
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2000, 49 (03) : 653 - 658
  • [13] WORST-CASE DELAY ESTIMATION OF TRANSISTOR GROUPS
    GAIOTTI, S
    DAGENAIS, MR
    RUMIN, NC
    26TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, 1989, : 491 - 496
  • [14] Worst-case centre-frequency estimation
    McKilliam, Robby G.
    Clarkson, I. Vaughan L.
    Kilpatrick, Troy
    2023 IEEE RADAR CONFERENCE, RADARCONF23, 2023,
  • [15] Sensor selection for minimizing worst-case prediction error
    Das, Abhimanyu
    Kempe, David
    2008 INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS, PROCEEDINGS, 2008, : 97 - 108
  • [16] Diaphony, discrepancy, spectral test and worst-case error
    Dick, J
    Pillichshammer, F
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2005, 70 (03) : 159 - 171
  • [17] Automatic determination of relative worst-case error bounds
    Bantle, A
    Krämer, W
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 : S819 - S820
  • [18] Fixed window estimation with a worst-case performance measure
    Banavar, RN
    Speyer, JL
    Chichka, DF
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 1303 - 1306
  • [19] Worst-case Optimal Submodular Extensions for Marginal Estimation
    Pansari, Pankaj
    Russell, Chris
    Kumar, M. Pawan
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [20] Kryptonite : Worst-Case Program Interference Estimation on Multi-Core Embedded Systems
    Singh, Nikhilesh
    Renganathan, Karthikeyan
    Rebeiro, Chester
    Jose, Jithin
    Mader, Ralph
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2023, 22 (05)