Reducing the numerical effort of finite-temperature density matrix renormalization group calculations

被引:67
|
作者
Karrasch, C. [1 ,2 ]
Bardarson, J. H. [1 ,2 ]
Moore, J. E. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 95720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
来源
NEW JOURNAL OF PHYSICS | 2013年 / 15卷
关键词
TRANSPORT; THERMODYNAMICS; CONDUCTIVITY; EQUIVALENCE; DYNAMICS; SYSTEMS; STATES; CHAIN;
D O I
10.1088/1367-2630/15/8/083031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Finite-temperature transport properties of one-dimensional systems can be studied using the time dependent density matrix renormalization group via the introduction of auxiliary degrees of freedom which purify the thermal statistical operator. We demonstrate how the numerical effort of such calculations is reduced when the physical time evolution is augmented by an additional time evolution within the auxiliary Hilbert space. Specifically, we explore a variety of integrable and non-integrable, gapless and gapped models at temperatures ranging from T = infinity down to T/bandwidth = 0.05 and study both (i) linear response where (heat and charge) transport coefficients are determined by the current-current correlation function and (ii) non-equilibrium driven by arbitrary large temperature gradients. The modified density matrix renormalization algorithm removes an 'artificial' build-up of entanglement between the auxiliary and physical degrees of freedom. Thus, longer time scales can be reached.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Density matrix numerical renormalization group for non-Abelian symmetries
    Toth, A. I.
    Moca, C. P.
    Legeza, Oe.
    Zarand, G.
    [J]. PHYSICAL REVIEW B, 2008, 78 (24)
  • [42] DENSITY-MATRIX RENORMALIZATION-GROUP CALCULATIONS FOR DOPED HUBBARD LADDERS
    WHITE, SR
    NOACK, RM
    SCALAPINO, DJ
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 1995, 99 (3-4) : 593 - 598
  • [43] GLUON POLARIZATION AT FINITE-TEMPERATURE AND DENSITY
    MASOOD, SS
    HASEEB, MQ
    [J]. ASTROPARTICLE PHYSICS, 1995, 3 (04) : 405 - 412
  • [44] Finite-temperature calculations of correlated electron systems
    Zhang, SW
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2000, 127 (01) : 150 - 155
  • [45] STRUCTURAL CALCULATIONS OF OXIDE SURFACES AT FINITE-TEMPERATURE
    MULHERAN, PA
    [J]. PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1993, 68 (04): : 799 - 808
  • [46] ONE-DIMENSIONAL SUPERCONDUCTIVITY - FINITE-TEMPERATURE SINGULARITY FROM RENORMALIZATION GROUP-THEORY
    SUNDARAM, R
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 1976, 24 (3-4) : 491 - 496
  • [47] Vibrational Density Matrix Renormalization Group
    Baiardi, Alberto
    Stein, Christopher J.
    Barone, Vincenzo
    Reiher, Markus
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (08) : 3764 - 3777
  • [48] Transcorrelated density matrix renormalization group
    Baiardi, Alberto
    Reiher, Markus
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (16):
  • [49] Density Matrix Renormalization Group for Dummies
    De Chiara, Gabriele
    Rizzi, Matteo
    Rossini, Davide
    Montangero, Simone
    [J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2008, 5 (07) : 1277 - 1288
  • [50] The density-matrix renormalization group
    Schollwöck, U
    [J]. REVIEWS OF MODERN PHYSICS, 2005, 77 (01) : 259 - 315