Reducing the numerical effort of finite-temperature density matrix renormalization group calculations

被引:69
|
作者
Karrasch, C. [1 ,2 ]
Bardarson, J. H. [1 ,2 ]
Moore, J. E. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 95720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
来源
NEW JOURNAL OF PHYSICS | 2013年 / 15卷
关键词
TRANSPORT; THERMODYNAMICS; CONDUCTIVITY; EQUIVALENCE; DYNAMICS; SYSTEMS; STATES; CHAIN;
D O I
10.1088/1367-2630/15/8/083031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Finite-temperature transport properties of one-dimensional systems can be studied using the time dependent density matrix renormalization group via the introduction of auxiliary degrees of freedom which purify the thermal statistical operator. We demonstrate how the numerical effort of such calculations is reduced when the physical time evolution is augmented by an additional time evolution within the auxiliary Hilbert space. Specifically, we explore a variety of integrable and non-integrable, gapless and gapped models at temperatures ranging from T = infinity down to T/bandwidth = 0.05 and study both (i) linear response where (heat and charge) transport coefficients are determined by the current-current correlation function and (ii) non-equilibrium driven by arbitrary large temperature gradients. The modified density matrix renormalization algorithm removes an 'artificial' build-up of entanglement between the auxiliary and physical degrees of freedom. Thus, longer time scales can be reached.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Finite-temperature density-matrix renormalization group method for electron-phonon systems: Thermodynamics and Holstein-polaron spectral functions
    Jansen, David
    Bonca, Janez
    Heidrich-Meisner, Fabian
    PHYSICAL REVIEW B, 2020, 102 (16)
  • [22] Finite-temperature renormalization-group study of a dissipative gauge theory with fermions
    Takano, H
    Onoda, M
    Ichinose, I
    Matsui, T
    NUCLEAR PHYSICS B, 1999, 542 (03) : 581 - 620
  • [23] WHAT CAN WE LEARN FROM THE FINITE-TEMPERATURE RENORMALIZATION-GROUP
    FREIRE, F
    STEPHENS, CR
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1993, 60 (01): : 127 - 133
  • [24] Finite density matrix renormalization group algorithm for anyonic systems
    Pfeifer, Robert N. C.
    Singh, Sukhwinder
    PHYSICAL REVIEW B, 2015, 92 (11):
  • [25] Variational Numerical Renormalization Group: Bridging the Gap between NRG and Density Matrix Renormalization Group
    Pizorn, Iztok
    Verstraete, Frank
    PHYSICAL REVIEW LETTERS, 2012, 108 (06)
  • [26] DIFFERENTIAL RENORMALIZATION FOR CURVED SPACE AND FINITE-TEMPERATURE
    COMELLAS, J
    HAAGENSEN, PE
    LATORRE, JI
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1995, 10 (19): : 2819 - 2839
  • [27] Density matrix renormalization group numerical study of the kagome antiferromagnet
    Jiang, H. C.
    Weng, Z. Y.
    Sheng, D. N.
    PHYSICAL REVIEW LETTERS, 2008, 101 (11)
  • [28] Quantum Proton Effects from Density Matrix Renormalization Group Calculations
    Feldmann, Robin
    Muolo, Andrea
    Baiardi, Alberto
    Reiher, Markus
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (01) : 234 - 250
  • [29] Advanced density matrix renormalization group method for nuclear structure calculations
    Legeza, Oe.
    Veis, L.
    Poves, A.
    Dukelsky, J.
    PHYSICAL REVIEW C, 2015, 92 (05):
  • [30] ANOMALIES AT FINITE-TEMPERATURE AND DENSITY
    NICOLA, AG
    ALVAREZESTRADA, RF
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (09): : 1423 - 1442