Reducing the numerical effort of finite-temperature density matrix renormalization group calculations

被引:67
|
作者
Karrasch, C. [1 ,2 ]
Bardarson, J. H. [1 ,2 ]
Moore, J. E. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 95720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
来源
NEW JOURNAL OF PHYSICS | 2013年 / 15卷
关键词
TRANSPORT; THERMODYNAMICS; CONDUCTIVITY; EQUIVALENCE; DYNAMICS; SYSTEMS; STATES; CHAIN;
D O I
10.1088/1367-2630/15/8/083031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Finite-temperature transport properties of one-dimensional systems can be studied using the time dependent density matrix renormalization group via the introduction of auxiliary degrees of freedom which purify the thermal statistical operator. We demonstrate how the numerical effort of such calculations is reduced when the physical time evolution is augmented by an additional time evolution within the auxiliary Hilbert space. Specifically, we explore a variety of integrable and non-integrable, gapless and gapped models at temperatures ranging from T = infinity down to T/bandwidth = 0.05 and study both (i) linear response where (heat and charge) transport coefficients are determined by the current-current correlation function and (ii) non-equilibrium driven by arbitrary large temperature gradients. The modified density matrix renormalization algorithm removes an 'artificial' build-up of entanglement between the auxiliary and physical degrees of freedom. Thus, longer time scales can be reached.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Finite-temperature dynamics with the density-matrix renormalization group method
    Kokalj, J.
    Prelovsek, P.
    [J]. PHYSICAL REVIEW B, 2009, 80 (20):
  • [2] Finite-temperature numerical renormalization group study of the Mott transition
    Bulla, R
    Costi, TA
    Vollhardt, D
    [J]. PHYSICAL REVIEW B, 2001, 64 (04):
  • [3] Finite-temperature density matrix renormalization using an enlarged Hilbert space
    Feiguin, AE
    White, SR
    [J]. PHYSICAL REVIEW B, 2005, 72 (22):
  • [4] Thermodynamics of the t-J ladder:: A stable finite-temperature density matrix renormalization group calculation
    Ammon, B
    Troyer, M
    Rice, TM
    Shibata, N
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (19) : 3855 - 3858
  • [5] Finite-Temperature Dynamical Density Matrix Renormalization Group and the Drude Weight of Spin-1/2 Chains
    Karrasch, C.
    Bardarson, J. H.
    Moore, J. E.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (22)
  • [6] FINITE-TEMPERATURE AND FINITE-DENSITY RENORMALIZATION EFFECTS IN QED
    AHMED, K
    SALEEM, S
    [J]. PHYSICAL REVIEW D, 1987, 35 (12): : 4020 - 4023
  • [7] Consistency of blocking transformations in the finite-temperature renormalization group
    Liao, SB
    Strickland, M
    [J]. NUCLEAR PHYSICS B, 1998, 532 (03) : 753 - 782
  • [8] Finite-temperature optical conductivity with density-matrix renormalization group methods for the Holstein polaron and bipolaron with dispersive phonons
    Jansen, David
    Bonca, Janez
    Heidrich-Meisner, Fabian
    [J]. PHYSICAL REVIEW B, 2022, 106 (15)
  • [9] Finite-temperature density matrix embedding theory
    Sun, Chong
    Ray, Ushnish
    Cui, Zhi-Hao
    Stoudenmire, Miles
    Ferrero, Michel
    Chan, Garnet Kin-Lic
    [J]. PHYSICAL REVIEW B, 2020, 101 (07)
  • [10] Finite-temperature gluon condensate with renormalization group flow equations
    Schaefer, BJ
    Bohr, O
    Wambach, J
    [J]. PHYSICAL REVIEW D, 2002, 65 (10):