A thermodynamically consistent Ginzburg-Landau model for superfluid transition in liquid helium

被引:12
|
作者
Berti, Alessia [1 ]
Berti, Valeria [2 ]
机构
[1] Univ E Campus, Fac Ingn, I-22060 Novedrate, CO, Italy
[2] Univ Bologna, Dipartimento Matemat, I-40126 Bologna, Italy
来源
关键词
Superfluids; Second-order phase transitions; Ginzburg-Landau equation; Thermodynamics; PHASE-TRANSITIONS; ORDER-PARAMETER; EQUATIONS;
D O I
10.1007/s00033-012-0280-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a thermodynamically consistent model for superfluid-normal phase transition in liquid helium, accounting for variations of temperature and density. The phase transition is described by means of an order parameter, according to the Ginzburg-Landau theory, emphasizing the analogies between superfluidity and superconductivity. The normal component of the velocity is assumed to be compressible, and the usual phase diagram of liquid helium is recovered. Moreover, the continuity equation leads to a dependence between density and temperature in agreement with the experimental data.
引用
收藏
页码:1387 / 1397
页数:11
相关论文
共 50 条
  • [41] Knot solitons in a modified Ginzburg-Landau model
    Jaeykkae, Juha
    Palmu, Joonatan
    PHYSICAL REVIEW D, 2011, 83 (10):
  • [42] Incommensurateness effects in a lattice Ginzburg-Landau model
    E. S. Babaev
    S. A. Ktitorov
    Physics of the Solid State, 1997, 39 : 1024 - 1027
  • [43] Covariant gaussian approximation in Ginzburg-Landau model
    Wang, J. F.
    Li, D. P.
    Kao, H. C.
    Rosenstein, B.
    ANNALS OF PHYSICS, 2017, 380 : 228 - 254
  • [44] A Model for Vortex Nucleation in the Ginzburg-Landau Equations
    Iyer, Gautam
    Spirn, Daniel
    JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (06) : 1933 - 1956
  • [45] ASYMPTOTIC BEHAVIOR OF A NONISOTHERMAL GINZBURG-LANDAU MODEL
    Grasselli, Maurizio
    Wu, Hao
    Zheng, Songmu
    QUARTERLY OF APPLIED MATHEMATICS, 2008, 66 (04) : 743 - 770
  • [46] Vortex analysis in the Ginzburg-Landau model of superconductivity
    Sandier, E
    Serfaty, S
    NONLINEAR PDE'S IN CONDENSED MATTER AND REACTIVE FLOWS, 2002, 569 : 491 - 506
  • [47] Periodic minimizers of the anisotropic Ginzburg-Landau model
    Alama, Stan
    Bronsard, Lia
    Sandier, Etienne
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 36 (03) : 399 - 417
  • [48] GINZBURG-LANDAU MODEL WITH SMALL PINNING DOMAINS
    Dos Santos, Mickael
    Misiats, Oleksandr
    NETWORKS AND HETEROGENEOUS MEDIA, 2011, 6 (04) : 715 - 753
  • [49] Masses and phase structure in the Ginzburg-Landau model
    Kajantie, K
    Karjalainen, M
    Laine, M
    Peisa, J
    PHYSICAL REVIEW B, 1998, 57 (05) : 3011 - 3016
  • [50] Gradient flow in the Ginzburg-Landau model of superconductivity
    Mikula, P.
    Carrington, M. E.
    Kunstatter, G.
    PHYSICAL REVIEW B, 2016, 94 (18)