The effect of manufacturing defects on the fatigue life of selective laser melted Ti-6Al-4V structures

被引:245
|
作者
Hu, Y. N. [1 ]
Wu, S. C. [1 ,2 ]
Withers, P. J. [2 ]
Zhang, J. [3 ]
Bao, H. Y. X. [1 ]
Fu, Y. N. [4 ]
Kang, G. Z. [1 ]
机构
[1] Southwest Jiaotong Univ, State Key Lab Tract Power, Chengdu 610031, Peoples R China
[2] Univ Manchester, Henry Royce Inst, Dept Mat, Manchester M13 9PL, Lancs, England
[3] AVIC Mfg Technol Inst, Beijing 100024, Peoples R China
[4] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai Synchrotron Radiat Facil SSRF, Shanghai 201204, Peoples R China
基金
英国工程与自然科学研究理事会; 欧洲研究理事会; 中国国家自然科学基金;
关键词
Defect tolerance method; Additive manufacturing; Fatigue crack initiation and growth; High cycle fatigue (HCF); Digital printing; MECHANICAL-PROPERTIES; POROSITY DEFECTS; PERFORMANCE; STRENGTH; ELECTRON; BEHAVIOR; ROUGHNESS; STRESS; DAMAGE;
D O I
10.1016/j.matdes.2020.108708
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The manufacturing defects introduced by selective laser melting typically lead to lower fatigue strength and a larger variation in fatigue life compared to conventionally manufactured structures. X-ray micro computed tomography (mu CT) is used to characterize the porosity and lack of fusion defects in terms of population, morphol-ogy, dimension and location. The defect size and location are combined with the NASA/FLACGRO (NASGRO) fatigue crack growth model to predict the likely fatigue life, in which an effective initial crack length is de fined using the cyclic plastic zone and the defect radius. An eXtended defect zone (XDZ) describing the propensity for local plasticity during fatigue around a defect has been shown through numerical analysis to be a good indicator of the ranking of the threat to fatigue caused by differently located manufacturing defects. This indicates that the effect of a defect, initial radius, r(0) , is likely to be pronounced when its center is within 2r(0) of the surface and maximal when it lies just beneath the surface. (C) 2020 The Author(s). Published by Elsevier Ltd.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Evaluation of Low Cycle Fatigue Performance of Selective Laser Melted Titanium Alloy Ti-6Al-4V
    Zhang, Peng
    He, Allen Naihui
    Liu, Fei
    Zhang, Kaifei
    Jiang, Junjie
    Zhang, David Zhengwen
    METALS, 2019, 9 (10)
  • [22] Surface roughness of Selective Laser Melted Ti-6Al-4V alloy components
    Chen, Zhuoer
    Wu, Xinhua
    Tomus, Dacian
    Davies, Chris H. J.
    ADDITIVE MANUFACTURING, 2018, 21 : 91 - 103
  • [23] Effect of crystallographic orientation on mechanical anisotropy of selective laser melted Ti-6Al-4V alloy
    Yang, Jingjing
    Yu, Hanchen
    Wang, Zemin
    Zeng, Xiaoyan
    MATERIALS CHARACTERIZATION, 2017, 127 : 137 - 145
  • [24] Wetting and Spreading of AgCuTi on Selective Laser-Melted Ti-6Al-4V
    Hao, Lujing
    Liu, Jiankun
    Li, Yulong
    MATERIALS, 2021, 14 (17)
  • [25] Anisotropy in the impact toughness of selective laser melted Ti-6Al-4V alloy
    Wu, Ming-Wei
    Lai, Pang-Hsin
    Chen, Jhewn-Kuang
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 650 : 295 - 299
  • [26] Uniaxial Compression Properties and Compression Fatigue Performance of Selective Laser Melted Ti-6Al-4V Cellular Structure
    Wu, Ming-Wei
    Chen, Jhewn-Kuang
    Tsai, Mo-Kai
    Wang, Pei
    Cheng, Tien-Lin
    Lin, Bo-Huan
    Chiang, Po-Hsing
    Dhinakar, Annadurai
    METALS AND MATERIALS INTERNATIONAL, 2022, 28 (01) : 132 - 144
  • [27] Effect of laser energy density on microstructures and mechanical properties of selective laser melted Ti-6Al-4V alloy
    Wei, Wen-Hou
    Shen, Jun
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2018, 109 (05) : 437 - 442
  • [28] Effect of heat treatment on microstructure evolution and mechanical properties of selective laser melted Ti-6Al-4V and TiB/Ti-6Al-4V composite: A comparative study
    Li, Hailiang
    Jia, Dechang
    Yang, Zhihua
    Liao, Xingqi
    Jin, Haize
    Cai, Delong
    Zhou, Yu
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 801
  • [29] Fatigue Properties of Ti-6Al-4V Produced by Selective Laser Melting
    Ma Tao
    Liu Tingting
    Liao Wenhe
    Jiang Liyi
    Xiao Zhennan
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2018, 45 (11):
  • [30] In vivo performance of selective electron beam-melted Ti-6Al-4V structures
    Ponader, Sabine
    von Wilmowsky, Cornelius
    Widenmayer, Martin
    Lutz, Rainer
    Heinl, Peter
    Koerner, Carolin
    Singer, Robert F.
    Nkenke, Emeka
    Neukam, Friedrich W.
    Schlegel, Karl A.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2010, 92A (01) : 56 - 62