Encapsulating CuO quantum dots in MIL-125(Ti) coupled with g-C3N4 for efficient photocatalytic CO2 reduction

被引:128
|
作者
Li, Naixu [1 ,4 ]
Liu, Xinchi [1 ]
Zhou, Jiancheng [1 ]
Chen, Wenshuai [3 ]
Liu, Maochang [2 ]
机构
[1] Southeast Univ, Sch Chem & Chem Engn, 2 Dongnandaxue Rd, Nanjing 211189, Peoples R China
[2] Xi An Jiao Tong Univ, Int Res Ctr Renewable Energy, State Key Lab Multiphase Flow Power Engn, 28 Xianning West Rd, Xian 710049, Shaanxi, Peoples R China
[3] Northeast Forestry Univ, Minist Educ, Key Lab Biobased Mat Sci & Technol, 26 Hexing Rd, Harbin 150040, Peoples R China
[4] Jiangsu Key Lab Biomass Energy & Mat, 16 Suojin Wucun, Nanjing 210042, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal organic framework; Photocatalysis; CO2; reduction; Quantum dots; METAL-ORGANIC FRAMEWORK; CARBON-DIOXIDE; TIO2; PERFORMANCE; FUELS; CH3OH; CH4; NANOCOMPOSITES; PHOTOREDUCTION; CONSTRUCTION;
D O I
10.1016/j.cej.2020.125782
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Improving the stability of metallic oxide quantum dots (QDs) in a reaction system containing water is crucial for their practical applications in photocatalytic reduction of carbon dioxide. Herein, we use simple complexationoxidation method to encapsulate CuO QDs in the pores of metal organic framework of MIL-125(Ti), and further combine it with g-C3N4 to form a composite photocatalyst, i.e., g-C3N4/CuO@MIL-125(Ti). Benefiting from the protection of the framework of MIL-125(Ti), the composite photocatalyst exhibits significantly improved stability in reaction systems containing water. In addition, due to the close contact of CuO QDs to the active catalytic site of Ti in MIL-125(Ti), the photogenerated electrons in the MIL-125(Ti) and g-C3N4 can be smoothly transferred to the confined CuO QDs, which remarkably enhances the photocatalytic activity of g-C3N4/CuO@ MIL-125(Ti) for photocatalytic CO2 reduction in the presence of water. An optimization of the photocatalyst has led to the yields of CO, methanol, acetaldehyde and ethanol up to 180.1, 997.2, 531.5 and 1505.7 mu mol/g, respectively. This work provides an effective strategy for improving the stability and charge separation property of metallic oxide-QDs modified photocatalyst toward efficient photocatalytic CO2 reduction.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] MXene Ti3C2 decorated g-C3N4/ZnO photocatalysts with improved photocatalytic performance for CO2 reduction
    Jianxin Li
    Yuhua Wang
    Yitong Wang
    Yao Guo
    Shiding Zhang
    Haixiang Song
    Xianchang Li
    Qianqian Gao
    Wanyu Shang
    Shuaishuai Hu
    Huibin Zheng
    Xifei Li
    Nano Materials Science, 2023, (02) : 237 - 245
  • [32] Construction of three-coordinated (N3C) nitrogen vacancies in g-C3N4 for efficient photocatalytic CO2 reduction
    Gong, Yuyang
    Yang, Penghui
    Ma, Dongmei
    Zhong, Junbo
    CERAMICS INTERNATIONAL, 2024, 50 (18) : 33131 - 33142
  • [33] Photocatalytic reduction of CO2 into CO over nanostructure Bi2S3 quantum dots/g-C3N4 composites with Z-scheme mechanism
    Guo, Rui-tang
    Liu, Xing-yu
    Qin, Hao
    Wang, Zhong-yi
    Shi, Xu
    Pan, Wei-guo
    Fu, Zai-guo
    Tang, Jun-ying
    Jia, Peng-yao
    Miao, Yu-fang
    Gu, Jing-wen
    APPLIED SURFACE SCIENCE, 2020, 500
  • [34] Synthesis and Efficient Visible Light Photocatalytic Hydrogen Evolution of Polymeric g-C3N4 Coupled with CdS Quantum Dots
    Ge, Lei
    Zuo, Fan
    Liu, Jikai
    Ma, Quan
    Wang, Chen
    Sun, Dezheng
    Bartels, Ludwig
    Feng, Pingyun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (25): : 13708 - 13714
  • [35] Boosting the Photocatalytic Ability of g-C3N4 for Hydrogen Production by Ti3C2 MXene Quantum Dots
    Li, Yujie
    Ding, Lei
    Guo, Yichen
    Liang, Zhangqian
    Cui, Hongzhi
    Tian, Jian
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (44) : 41440 - 41447
  • [36] A review on photocatalytic CO2 reduction of g-C3N4 and g-C3N4-based photocatalysts modified by CQDs
    Zhao, Yuan
    Yang, Dongyin
    Yu, Cailian
    Yan, Hong
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (02):
  • [37] g-C3N4/dendritic fibrous nanosilica doped with potassium for photocatalytic CO2 reduction
    Rawool, Sushma A.
    Kar, Yusuf
    Polshettiwar, Vivek
    MATERIALS ADVANCES, 2022, 3 (23): : 8449 - 8459
  • [38] Enhanced performance of attapulgite-supported g-C3N4 for photocatalytic CO2 reduction
    Yang, Wenqin
    Zhou, Yu
    Zhao, Jiale
    She, Houde
    Zhang, Yang
    Peng, Jianhong
    Huang, Jingwei
    Wang, Lei
    Wang, Qizhao
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 692
  • [39] Recent progress in modifications of g-C3N4 for photocatalytic hydrogen evolution and CO2 reduction
    Rana, Garima
    Dhiman, Pooja
    Kumar, Amit
    Dawi, Elmuez A.
    Sharma, Gaurav
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2024, 39 (01)
  • [40] Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction
    Ma, Liang
    Li, Zhou
    Jiang, Zhiqiang
    Wu, Xiaofeng
    Chang, Shixin
    Carabineiro, A. C.
    Lv, Kangle
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2024, 43 (11)