Performance of Inversion, Accumulation, and Junctionless Mode n-Type and p-Type Bulk Silicon FinFETs With 3-nm Gate Length

被引:57
|
作者
Thirunavukkarasu, Vasanthan [1 ,2 ,3 ]
Jhan, Yi-Ruei [1 ]
Liu, Yan-Bo [1 ]
Wu, Yung-Chun [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsinchu 300, Taiwan
[2] Acad Sinica, Nano Sci & Technol Program, Taiwan Int Grad Program, Hsinchu 300, Taiwan
[3] Natl Tsing Hua Univ, Hsinchu 300, Taiwan
关键词
FinFET; inversion; accumulation; junctionless; 3D TCAD simulation; 3-nm gate length;
D O I
10.1109/LED.2015.2433303
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We investigated the device performance of the optimized 3-nm gate length (L-G) bulk silicon FinFET device using 3-D quantum transport device simulation. By keeping source and drain doping constant and by varying only the channel doping, the simulated device is made to operate in three different modes such as inversion (IM) mode, accumulation (AC) mode and junctionless (JL) mode. The excellent electrical characteristics of the 3-nm gate length Si-based bulk FinFET device were investigated. The subthreshold slope values (SS similar to 65 mV/decade) and drain-induced barrier lowering (DIBL < 17 mV/V) are analyzed in all three IM, AC, and JL modes bulk FinFET with |V-TH| similar to 0.31 V. Furthermore, the threshold voltage (VTH) of the bulk FinFET can be easily tuned by varying the work function. This letter reveals that Moore's law can continue up to 3-nm nodes.
引用
收藏
页码:645 / 647
页数:3
相关论文
共 50 条
  • [21] P-TYPE AND N-TYPE SILICON AND THE FORMATION OF THE PHOTOVOLTAIC BARRIER IN SILICON INGOTS
    SCAFF, JH
    THEUERER, HC
    SCHUMACHER, EE
    TRANSACTIONS OF THE AMERICAN INSTITUTE OF MINING AND METALLURGICAL ENGINEERS, 1949, 185 (06): : 383 - 388
  • [22] A Unified Analytical Current Model for N- and P-Type Accumulation-Mode (Junctionless) Surrounding-Gate Nanowire FETs
    Yu, Yun Seop
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (08) : 3007 - 3010
  • [23] Origin of Device Performance Enhancement of Junctionless Accumulation-Mode (JAM) Bulk FinFETs With High-κ Gate Spacers
    Choi, Ji Hun
    Kim, Tae Kyun
    Moon, Jung Min
    Yoon, Young Gwang
    Hwang, Byeong Woon
    Kim, Dong Hyun
    Lee, Seok-Hee
    IEEE ELECTRON DEVICE LETTERS, 2014, 35 (12) : 1182 - 1184
  • [24] Monte Carlo Comparison of n-Type and p-Type Nanosheets With FinFETs: Effect of the Number of Sheets
    Bufler, F. M.
    Jang, D.
    Hellings, G.
    Eneman, G.
    Matagne, P.
    Spessot, A.
    Na, M. H.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (11) : 4701 - 4704
  • [25] The structure and optical properties of n-type and p-type porous silicon
    Hong, KP
    Lee, CM
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2003, 42 : S671 - S675
  • [26] CHARACTERISTICS OF SCHOTTKY BARRIERS ON N-TYPE AND P-TYPE IMPLANTED SILICON
    WILSON, RG
    JAMBA, DM
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1976, 123 (08) : C275 - C275
  • [27] TEMPERATURE-COEFFICIENT OF RESISTANCE FOR P-TYPE AND N-TYPE SILICON
    NORTON, P
    BRANDT, J
    SOLID-STATE ELECTRONICS, 1978, 21 (07) : 969 - 974
  • [28] DIFFUSION OF BORON IN HEAVILY DOPED N-TYPE AND P-TYPE SILICON
    WILLOUGHBY, AFW
    EVANS, AGR
    CHAMP, P
    YALLUP, KJ
    GODFREY, DJ
    DOWSETT, MG
    JOURNAL OF APPLIED PHYSICS, 1986, 59 (07) : 2392 - 2397
  • [29] Flicker Noise in N-type and P-type Silicon Nanowire Transistors
    Yang, Seungwon
    Son, Younghwan
    Suk, Sung Dae
    Kim, Dong-Won
    Park, Donggun
    Oh, Kyungseok
    Shin, Hyungcheol
    2008 IEEE SILICON NANOELECTRONICS WORKSHOP, 2008, : 43 - +
  • [30] REDUCTION OF ANTHRAQUINONE DERIVATIVES AT N-TYPE AND P-TYPE SILICON ELECTRODES
    KEITA, B
    KAWENOKI, I
    KOSSANYI, J
    NADJO, L
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1983, 145 (02): : 311 - 323