The geometry of Ulrich bundles on del Pezzo surfaces

被引:31
|
作者
Coskun, Emre [1 ]
Kulkarni, Rajesh S. [2 ]
Mustopa, Yusuf [3 ]
机构
[1] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Ulrich bundles; Algebraic surfaces; MINIMAL RESOLUTION CONJECTURE; POINTS; BINARY;
D O I
10.1016/j.jalgebra.2012.08.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a smooth del Pezzo surface X-d subset of P-d of degree d, we isolate the essential geometric obstruction to a vector bundle on X-d being an Ulrich bundle by showing that an irreducible curve D of degree dr on X-d represents the first Chern class of a rank-r Ulrich bundle on X-d if and only if the kernel bundle of the general. smooth element of vertical bar D vertical bar admits a generalized theta-divisor. Moreover, we show that any smooth arithmetically Gorenstein surface whose Ulrich bundles admit such a characterization is necessarily del Pezzo. This result is applied to produce new examples of complete intersection curves with semistable kernel bundle, and also combined, with work of Farkas, Mustata and Popa to relate the existence of Ulrich bundles on X-d to the Minimal Resolution Conjecture for curves lying on X-d. In particular, we show that a smooth irreducible curve D of degree 3r lying on a smooth cubic surface X-3 represents the first Chern class of an Ulrich bundle on X-3 if and, only if the Minimal Resolution Conjecture holds for the general smooth element of vertical bar D vertical bar. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:280 / 301
页数:22
相关论文
共 50 条
  • [31] ULRICH BUNDLES ON VERONESE SURFACES
    Coskun, Emre
    Genc, Ozhan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (11) : 4687 - 4701
  • [32] Ulrich bundles on ruled surfaces
    Aprodu, Marian
    Costa, Laura
    Maria Miro-Roig, Rosa
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (01) : 131 - 138
  • [33] Weyl Curvature, Del Pezzo Surfaces, and Almost-Kähler Geometry
    Claude LeBrun
    The Journal of Geometric Analysis, 2015, 25 : 1744 - 1772
  • [34] Geometry of moduli space of sheaves on del Pezzo surfaces via Maruyama transform
    Choi, Jinwon
    Chung, Kiryong
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (02) : 907 - 916
  • [35] Semiorthogonal decompositions and birational geometry of del Pezzo surfaces over arbitrary fields
    Auel, Asher
    Bernardara, Marcello
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2018, 117 : 1 - 64
  • [36] Elementary theory of Del Pezzo surfaces
    Schicho, J
    COMPUTATIONAL METHODS FOR ALGEBRAIC SPLINE SURFACES, 2005, : 77 - 94
  • [37] REGULAR DEL PEZZO SURFACES WITH IRREGULARITY
    Maddock, Zachary
    JOURNAL OF ALGEBRAIC GEOMETRY, 2016, 25 (03) : 401 - 429
  • [38] Interpolation problems: del Pezzo surfaces
    Landesman, Aaron
    Patel, Anand
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2019, 19 (04) : 1389 - 1428
  • [39] Del Pezzo Surfaces with Many Symmetries
    Cheltsov, Ivan
    Wilson, Andrew
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (03) : 1257 - 1289
  • [40] Del Pezzo Surfaces with Many Symmetries
    Ivan Cheltsov
    Andrew Wilson
    Journal of Geometric Analysis, 2013, 23 : 1257 - 1289