Nonvolatile resistive switching behaviour and the mechanism in Nd:BiFeO3/Nb:SrTiO3 heterostructure

被引:18
|
作者
Zhu, Yongdan [1 ,2 ,3 ]
Li, Meiya [1 ,2 ]
Hu, Zhongqiang [1 ,2 ]
Liu, Xiaolian [1 ,2 ]
Wang, Qiangwen [1 ,2 ]
Fang, Xiaoli [1 ,2 ]
Guo, Kaimo [1 ,2 ]
机构
[1] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Minist Educ, Key Lab Artificial Micro Nano Struct, Wuhan 430072, Peoples R China
[3] Hubei Univ Nationalities, Sch Informat Engn, Enshi 445000, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Strontium titanates;
D O I
10.1088/0022-3727/46/21/215305
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper reports the bipolar resistive switching (RS) effect of the Nd0.05Bi0.95FeO3/Nb:SrTiO3 heterostructure fabricated by pulsed laser deposition. This heterostructure shows a high RS ratio of over 600 at a read voltage of -0.3V after applying 5V/-8V pulse voltages. Moreover, the resistance states could be switched reversibly among multilevel resistance states by changing the magnitude of set or reset pulse voltages, which shows promise for multilevel nonvolatile memory application. The mechanism of the RS between high- and low-resistance states could be attributed to the carrier injection-trapped/detrapped process, which changes the height and thickness of the barrier at the Nd0.05Bi0.95FeO3/Nb:SrTiO3 interface.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Nonvolatile Resistive Switching in Pt/LaAlO3/SrTiO3 Heterostructures
    Wu, Shuxiang
    Luo, Xin
    Turner, Stuart
    Peng, Haiyang
    Lin, Weinan
    Ding, Junfeng
    David, Adrian
    Wang, Biao
    Van Tendeloo, Gustaaf
    Wang, Junling
    Wu, Tom
    PHYSICAL REVIEW X, 2013, 3 (04):
  • [22] Nonvolatile conductive filaments resistive switching behaviors in Ag/GaOx/Nb:SrTiO3/Ag structure
    P. G. Li
    Y. S. Zhi
    P. C. Wang
    Z. B. Sun
    L. H. Li
    Y. H. An
    D. Y. Guo
    W. H. Tang
    J. H. Xiao
    Applied Physics A, 2016, 122
  • [23] Ultrafast resistive switching in SrTiO3:Nb single crystal
    Zhang, X. T.
    Yu, Q. X.
    Yao, Y. P.
    Li, X. G.
    APPLIED PHYSICS LETTERS, 2010, 97 (22)
  • [24] Nonvolatile conductive filaments resistive switching behaviors in Ag/GaOx/Nb:SrTiO3/Ag structure
    Li, P. G.
    Zhi, Y. S.
    Wang, P. C.
    Sun, Z. B.
    Li, L. H.
    An, Y. H.
    Guo, D. Y.
    Tang, W. H.
    Xiao, J. H.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122 (07):
  • [25] Current rectifying and resistive switching in high density BiFeO3 nanocapacitor arrays on Nb-SrTiO3 substrates
    Zhao, Lina
    Lu, Zengxing
    Zhang, Fengyuan
    Tian, Guo
    Song, Xiao
    Li, Zhongwen
    Huang, Kangrong
    Zhang, Zhang
    Qin, Minghui
    Wu, Sujuan
    Lu, Xubing
    Zeng, Min
    Gao, Xingsen
    Dai, Jiyan
    Liu, Jun-Ming
    SCIENTIFIC REPORTS, 2015, 5
  • [26] Current rectifying and resistive switching in high density BiFeO3 nanocapacitor arrays on Nb-SrTiO3 substrates
    Lina Zhao
    Zengxing Lu
    Fengyuan Zhang
    Guo Tian
    Xiao Song
    Zhongwen Li
    Kangrong Huang
    Zhang Zhang
    Minghui Qin
    Xubing SujuanWu
    Min Lu
    Xingsen Zeng
    Jiyan Gao
    Jun-Ming Dai
    Scientific Reports, 5
  • [27] Resistive switching effect in SrTiO3-δ/Nb-doped SrTiO3 heterojunction
    Ni, M. C.
    Guo, S. M.
    Tian, H. F.
    Zhao, Y. G.
    Li, J. Q.
    APPLIED PHYSICS LETTERS, 2007, 91 (18)
  • [28] Resistive switching of Pt/Nb: SrTiO3 and La0.7Sr0.3MnO3/Nb:SrTiO3 structures
    Dong, Chengang
    Han, Xiaowei
    Wang, Zhiquan
    Liu, Dongqing
    FUNCTIONAL MATERIALS LETTERS, 2025, 18 (01)
  • [29] Impact of interfacial effects on ferroelectric resistance switching of Au/BiFeO3/Nb:SrTiO3(100) Schottky junctions
    He, Shumin
    Liu, Guolei
    Zhu, Yinlian
    Ma, Xiuliang
    Sun, Jirong
    Kang, Shishou
    Yan, Shishen
    Chen, Yanxue
    Mei, Liangmo
    Jiao, Jun
    RSC ADVANCES, 2017, 7 (37): : 22715 - 22721
  • [30] MOCVD of BiFeO3 thin films on SrTiO3
    Thery, Jessica
    Dubourdieu, Catherine
    Baron, Thierry
    Ternon, Celine
    Roussel, Herve
    Pierre, Francois
    CHEMICAL VAPOR DEPOSITION, 2007, 13 (05) : 232 - 238