Study of fractional integral inequalities involving Mittag-Leffler functions via convexity

被引:4
|
作者
Chen, Zhihua [1 ]
Farid, Ghulam [2 ]
Saddiqa, Maryam [3 ]
Ullah, Saleem [3 ]
Latif, Naveed [4 ]
机构
[1] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou 510006, Peoples R China
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock, Pakistan
[3] Air Univ, Dept Math, Islamabad, Pakistan
[4] Jubail Ind Coll, Gen Studies Dept, Jubail Ind City 31961, Jubail, Saudi Arabia
关键词
Convex function; (alpha; h - m)-convex function; Mittag-Leffler function; Fractional integral operators; HADAMARD-TYPE; EXTENSION; OPERATORS; (S;
D O I
10.1186/s13660-020-02465-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies fractional integral inequalities for fractional integral operators containing extended Mittag-Leffler (ML) functions. These inequalities provide upper bounds of left- and right-sided fractional integrals for(alpha,h-m)-convex functions. A generalized fractional Hadamard inequality is established. All the results hold forh-convex, (h, m)-convex,( alpha,m)-convex, (s, m)-convex, and associated functions.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Generalized k-Fractional Chebyshev-Type Inequalities via Mittag-Leffler Functions
    Zhang, Zhiqiang
    Farid, Ghulam
    Mehmood, Sajid
    Jung, Chahn-Yong
    Yan, Tao
    AXIOMS, 2022, 11 (02)
  • [32] A FRACTIONAL INTEGRAL OPERATOR INVOLVING THE MITTAG-LEFFLER TYPE FUNCTION WITH FOUR PARAMETERS
    Agarwal, Praveen
    Milovanovic, Gradimir V.
    Nisar, K. S.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2015, 30 (05): : 597 - 605
  • [33] Some new fractional integral inequalities for exponentially m-convex functions via extended generalized Mittag-Leffler function
    Rashid, Saima
    Safdar, Farhat
    Akdemir, Ahmet Ocak
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [34] The Integral Mittag-Leffler, Whittaker and Wright Functions
    Apelblat, Alexander
    Gonzalez-Santander, Juan Luis
    MATHEMATICS, 2021, 9 (24)
  • [35] On the fractional calculus of multivariate Mittag-Leffler functions
    Ozarslan, Mehmet Ali
    Fernandez, Arran
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (02) : 247 - 273
  • [36] Fractional derivatives of the generalized Mittag-Leffler functions
    Denghao Pang
    Wei Jiang
    Azmat U. K. Niazi
    Advances in Difference Equations, 2018
  • [37] Fractional derivatives of the generalized Mittag-Leffler functions
    Pang, Denghao
    Jiang, Wei
    Niazi, Azmat U. K.
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [38] Some new fractional integral inequalities for exponentially m-convex functions via extended generalized Mittag-Leffler function
    Saima Rashid
    Farhat Safdar
    Ahmet Ocak Akdemir
    Muhammad Aslam Noor
    Khalida Inayat Noor
    Journal of Inequalities and Applications, 2019
  • [39] Integral Equations Involving Generalized Mittag-Leffler Function
    R. Desai
    I. A. Salehbhai
    A. K. Shukla
    Ukrainian Mathematical Journal, 2020, 72 : 712 - 721
  • [40] Integral Equations Involving Generalized Mittag-Leffler Function
    Desai, R.
    Salehbhai, I. A.
    Shukla, A. K.
    UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (05) : 712 - 721