Study of fractional integral inequalities involving Mittag-Leffler functions via convexity

被引:4
|
作者
Chen, Zhihua [1 ]
Farid, Ghulam [2 ]
Saddiqa, Maryam [3 ]
Ullah, Saleem [3 ]
Latif, Naveed [4 ]
机构
[1] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou 510006, Peoples R China
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock, Pakistan
[3] Air Univ, Dept Math, Islamabad, Pakistan
[4] Jubail Ind Coll, Gen Studies Dept, Jubail Ind City 31961, Jubail, Saudi Arabia
关键词
Convex function; (alpha; h - m)-convex function; Mittag-Leffler function; Fractional integral operators; HADAMARD-TYPE; EXTENSION; OPERATORS; (S;
D O I
10.1186/s13660-020-02465-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies fractional integral inequalities for fractional integral operators containing extended Mittag-Leffler (ML) functions. These inequalities provide upper bounds of left- and right-sided fractional integrals for(alpha,h-m)-convex functions. A generalized fractional Hadamard inequality is established. All the results hold forh-convex, (h, m)-convex,( alpha,m)-convex, (s, m)-convex, and associated functions.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Fractional versions of Minkowski-type integral inequalities via unified Mittag-Leffler function
    Zhou, Shuang-Shuang
    Farid, Ghulam
    Ahmad, Ayyaz
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (01):
  • [22] On local fractional integral inequalities via generalized ((sic)1, (sic) 2) -preinvexity involving local fractional integral operators with Mittag-Leffler kernel
    Vivas-Cortez, Miguel
    Bibi, Maria
    Muddassar, Muhammad
    Al-Sa'di, Sa'ud
    DEMONSTRATIO MATHEMATICA, 2023, 56 (01)
  • [23] Some new inequalities for generalized h-convex functions involving local fractional integral operators with Mittag-Leffler kernel
    Sun, Wenbing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) : 4985 - 4998
  • [24] General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function
    Farid, G.
    Khan, K. A.
    Latif, N.
    Rehman, A. U.
    Mehmood, S.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [25] General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function
    G. Farid
    K. A. Khan
    N. Latif
    A. U. Rehman
    S. Mehmood
    Journal of Inequalities and Applications, 2018
  • [26] A Note on Fractional Integral Operator Associated with Multiindex Mittag-Leffler Functions
    Choi, Junesang
    Agarwal, Praveen
    FILOMAT, 2016, 30 (07) : 1931 - 1939
  • [27] Fractional Ostrowski Type Inequalities via Generalized Mittag-Leffler Function
    You, Xinghua
    Farid, Ghulam
    Maheen, Kahkashan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [28] Some integral inequalities for m-convex functions via generalized fractional integral operator containing generalized Mittag-Leffler function
    Abbas, G.
    Farid, G.
    COGENT MATHEMATICS, 2016, 3
  • [29] Hadamard and Fejer-Hadamard Inequalities for Further Generalized Fractional Integrals Involving Mittag-Leffler Functions
    Yussouf, M.
    Farid, G.
    Khan, K. A.
    Jung, Chahn Yong
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [30] Radii of starlikeness and convexity of generalized Mittag-Leffler functions
    Baricz, Arpad
    Prajapati, Anuja
    MATHEMATICAL COMMUNICATIONS, 2020, 25 (01) : 117 - 135