A new mimetic scheme for the acoustic wave equation

被引:16
|
作者
Solano-Feo, F. [1 ]
Guevara-Jordan, J. M. [1 ]
Rojas, O. [2 ]
Otero, B. [3 ]
Rodriguez, R. [4 ]
机构
[1] Cent Univ Venezuela, Fac Ciencias, Escuela Matemat, Caracas, Venezuela
[2] Cent Univ Venezuela, Fac Ciencias, Escuela Computac, Caracas, Venezuela
[3] Univ Politecn Cataluna, Dept Arquitectura Comp, Barcelona, Spain
[4] Univ Politecn Cataluna, Escola Tecn Super Engn Telecomunicacio Barcelona, Barcelona, Spain
关键词
Acoustic; Staggered grid; Mimetic; Convergence; Finite differences;
D O I
10.1016/j.cam.2015.09.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new mimetic finite difference scheme for solving the acoustic wave equation is presented. It combines a novel second order tensor mimetic discretizations in space and a leapfrog approximation in time to produce an explicit multidimensional scheme. Convergence analysis of the new scheme on a staggered grid shows that it can take larger time steps than standard finite difference schemes based on ghost points formulation. A set of numerical test problems gives evidence of the versatility of the new mimetic scheme for handling general boundary conditions. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:2 / 12
页数:11
相关论文
共 50 条
  • [31] Implicit/Explicit, BEM/FEM Coupled Scheme for Acoustic Waves with the Wave Equation in the Second Order Formulation
    Banjai, Lehel
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2022, 22 (04) : 757 - 773
  • [32] Three-dimensional acoustic wave equation modeling based on the optimal finite-difference scheme
    Xiao-Hui Cai
    Yang Liu
    Zhi-Ming Ren
    Jian-Min Wang
    Zhi-De Chen
    Ke-Yang Chen
    Cheng Wang
    Applied Geophysics, 2015, 12 : 409 - 420
  • [33] A finite-difference scheme in frequency-space domain to solve heterogeneous acoustic wave equation
    Wu Y.
    Wu G.
    Li Q.
    Yang L.
    Jia Z.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2022, 57 (02): : 342 - 356
  • [34] RECOVERY OF HIGH FREQUENCY WAVE FIELDS FOR THE ACOUSTIC WAVE EQUATION
    Liu, Hailiang
    Ralston, James
    MULTISCALE MODELING & SIMULATION, 2009, 8 (02): : 428 - 444
  • [35] New unconditionally stable scheme for solving two-dimensional acoustic wave problems
    Zhang, Di
    Miao, Xiaoping
    ACOUSTICAL SCIENCE AND TECHNOLOGY, 2016, 37 (06) : 315 - 318
  • [36] Finite Element θ-Schemes for the Acoustic Wave Equation
    Karaa, Samir
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2011, 3 (02) : 181 - 203
  • [37] MIGRATION WITH THE FULL ACOUSTIC-WAVE EQUATION
    KOSLOFF, DD
    BAYSAL, E
    GEOPHYSICS, 1983, 48 (06) : 677 - 687
  • [38] Depth migration based on the acoustic wave equation
    Celis, V
    Mujica, D
    VISION TECNOLOGICA, 1996, 4 (01): : 5 - 12
  • [39] Acoustic wave equation simulation using FDTD
    Cizek, Martin
    Rozman, Jiri
    2007 17TH INTERNATIONAL CONFERENCE RADIOELEKTRONIKA, VOLS 1 AND 2, 2007, : 202 - +
  • [40] An approximate acoustic wave equation for VTI media
    Huang Yi-Jian
    Zhu Guang-Ming
    Liu Chi-Yang
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2011, 54 (08): : 2117 - 2123