A new mimetic scheme for the acoustic wave equation

被引:16
|
作者
Solano-Feo, F. [1 ]
Guevara-Jordan, J. M. [1 ]
Rojas, O. [2 ]
Otero, B. [3 ]
Rodriguez, R. [4 ]
机构
[1] Cent Univ Venezuela, Fac Ciencias, Escuela Matemat, Caracas, Venezuela
[2] Cent Univ Venezuela, Fac Ciencias, Escuela Computac, Caracas, Venezuela
[3] Univ Politecn Cataluna, Dept Arquitectura Comp, Barcelona, Spain
[4] Univ Politecn Cataluna, Escola Tecn Super Engn Telecomunicacio Barcelona, Barcelona, Spain
关键词
Acoustic; Staggered grid; Mimetic; Convergence; Finite differences;
D O I
10.1016/j.cam.2015.09.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new mimetic finite difference scheme for solving the acoustic wave equation is presented. It combines a novel second order tensor mimetic discretizations in space and a leapfrog approximation in time to produce an explicit multidimensional scheme. Convergence analysis of the new scheme on a staggered grid shows that it can take larger time steps than standard finite difference schemes based on ghost points formulation. A set of numerical test problems gives evidence of the versatility of the new mimetic scheme for handling general boundary conditions. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:2 / 12
页数:11
相关论文
共 50 条
  • [21] Decoupled wave equation and forward modeling of qP wave in VTI media with the new acoustic approximation
    Liang, Kai
    Cao, Danping
    Sun, Shangrao
    Yin, Xingyao
    GEOPHYSICS, 2023, 88 (01) : WA335 - WA344
  • [22] A Modified PML Acoustic Wave Equation
    Kim, Dojin
    SYMMETRY-BASEL, 2019, 11 (02):
  • [23] An acoustic wave equation for orthorhombic anisotropy
    Alkhalifah, T
    GEOPHYSICS, 2003, 68 (04) : 1169 - 1172
  • [24] Acoustic Wave Equation in a Bubbly Liquid
    Miao, Boya
    An, Yu
    RECENT DEVELOPMENTS IN NONLINEAR ACOUSTICS, 2015, 1685
  • [25] An acoustic wave equation for anisotropic media
    Alkhalifah, T
    GEOPHYSICS, 2000, 65 (04) : 1239 - 1250
  • [26] Determining the nonlinearity in an acoustic wave equation
    Kaltenbacher, Barbara
    Rundell, William
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (07) : 3554 - 3573
  • [27] Operator upscaling for the acoustic wave equation
    Vdovina, T
    Minkoff, SE
    Korostyshevskaya, O
    MULTISCALE MODELING & SIMULATION, 2005, 4 (04): : 1305 - 1338
  • [28] Solving the tensorial 3D acoustic wave equation: A mimetic finite-difference time-domain approach
    Shragge, Jeffrey
    Tapley, Benjamin
    GEOPHYSICS, 2017, 82 (04) : T183 - T196
  • [29] A new high accuracy locally one-dimensional scheme for the wave equation
    Zhang, Wensheng
    Tong, Li
    Chung, Eric T.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (06) : 1343 - 1353
  • [30] Three-dimensional acoustic wave equation modeling based on the optimal finite-difference scheme
    Cai Xiao-Hui
    Liu Yang
    Ren Zhi-Ming
    Wang Jian-Min
    Chen Zhi-De
    Chen Ke-Yang
    Wang Cheng
    APPLIED GEOPHYSICS, 2015, 12 (03) : 409 - 420