A new mimetic scheme for the acoustic wave equation

被引:16
|
作者
Solano-Feo, F. [1 ]
Guevara-Jordan, J. M. [1 ]
Rojas, O. [2 ]
Otero, B. [3 ]
Rodriguez, R. [4 ]
机构
[1] Cent Univ Venezuela, Fac Ciencias, Escuela Matemat, Caracas, Venezuela
[2] Cent Univ Venezuela, Fac Ciencias, Escuela Computac, Caracas, Venezuela
[3] Univ Politecn Cataluna, Dept Arquitectura Comp, Barcelona, Spain
[4] Univ Politecn Cataluna, Escola Tecn Super Engn Telecomunicacio Barcelona, Barcelona, Spain
关键词
Acoustic; Staggered grid; Mimetic; Convergence; Finite differences;
D O I
10.1016/j.cam.2015.09.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new mimetic finite difference scheme for solving the acoustic wave equation is presented. It combines a novel second order tensor mimetic discretizations in space and a leapfrog approximation in time to produce an explicit multidimensional scheme. Convergence analysis of the new scheme on a staggered grid shows that it can take larger time steps than standard finite difference schemes based on ghost points formulation. A set of numerical test problems gives evidence of the versatility of the new mimetic scheme for handling general boundary conditions. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:2 / 12
页数:11
相关论文
共 50 条
  • [1] A convolutional dispersion relation preserving scheme for the acoustic wave equation
    Ovadia, Oded
    Kahana, Adar
    Turkel, Eli
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 461
  • [2] A STABLE EXPLICIT SCHEME FOR THE OCEAN ACOUSTIC-WAVE EQUATION
    CHAN, TF
    SHEN, L
    LEE, D
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1985, 11 (09) : 929 - 936
  • [3] A new central compact finite difference scheme with high spectral resolution for acoustic wave equation
    Wang, Zhikai
    Li, Jingye
    Wang, Benfeng
    Xu, Yiran
    Chen, Xiaohong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 366 : 191 - 206
  • [4] A performance analysis of a mimetic finite difference scheme for acoustic wave propagation on GPU platforms
    Otero, Beatriz
    Frances, Jorge
    Rodriguez, Robert
    Rojas, Otilio
    Solano, Freysimar
    Guevara-Jordan, Juan
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2017, 29 (04):
  • [5] A new staggered grid finite difference scheme optimised in the space domain for the first order acoustic wave equation
    Liang, Wenquan
    Wu, Xiu
    Wang, Yanfei
    Cao, Jingjie
    Wu, Chaofan
    He, Baoqing
    EXPLORATION GEOPHYSICS, 2018, 49 (06) : 898 - 905
  • [6] A New Fundamental Asymmetric Wave Equation and Its Application to Acoustic Wave Propagation
    Musielak, Z. E.
    ADVANCES IN MATHEMATICAL PHYSICS, 2023, 2023
  • [7] A New Energy Conservative Scheme for Regularized Long Wave Equation
    Luo, Yuesheng
    Xing, Ruixue
    Li, Xiaole
    APPLICATIONS OF MATHEMATICS, 2021, 66 (05) : 745 - 765
  • [8] A new energy conservative scheme for regularized long wave equation
    Yuesheng Luo
    Ruixue Xing
    Xiaole Li
    Applications of Mathematics, 2021, 66 : 745 - 765
  • [9] A new numerical scheme for the nonlinear Schrodinger equation with wave operator
    Li, Xin
    Zhang, Luming
    Zhang, Ting
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 54 (1-2) : 109 - 125
  • [10] A combined compact finite difference scheme for solving the acoustic wave equation in heterogeneous media
    Li, Da
    Li, Keran
    Liao, Wenyuan
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (06) : 4062 - 4086