Left passage probability of Schramm-Loewner Evolution

被引:12
|
作者
Najafi, M. N. [1 ]
机构
[1] Univ Mohaghegh Ardabili, Dept Phys, Ardebil, Iran
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 06期
关键词
ERASED RANDOM-WALKS; CONFORMAL-INVARIANCE; SLE;
D O I
10.1103/PhysRevE.87.062105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
SLE(kappa,(rho) over right arrow) is a variant of Schramm-Loewner Evolution (SLE) which describes the curves which are not conformal invariant, but are self-similar due to the presence of some other preferred points on the boundary. In this paper we study the left passage probability (LPP) of SLE(kappa,(rho) over right arrow) through field theoretical framework and find the differential equation governing this probability. This equation is numerically solved for the special case kappa = 2 and h(rho) = 0 in which h(rho) is the conformal weight of the boundary changing (bcc) operator. It may be referred to loop erased random walk (LERW) and Abelian sandpile model (ASM) with a sink on its boundary. For the curve which starts from xi(0) and conditioned by a change of boundary conditions at x(0), we find that this probability depends significantly on the factor x(0) -xi(0). We also present the perturbative general solution for large x(0). As a prototype, we apply this formalism to SLE(kappa,kappa - 6) which governs the curves that start from and end on the real axis.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Schramm-Loewner evolution of the accessible perimeter of isoheight lines of correlated landscapes
    Pose, N.
    Schrenk, K. J.
    Araujo, N. A. M.
    Herrmann, H. J.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2018, 29 (01):
  • [42] Schramm-Loewner evolution and perimeter of percolation clusters of correlated random landscapes
    de Castro, C. P.
    Lukovic, M.
    Pompanin, G.
    Andrade, R. F. S.
    Herrmann, H. J.
    SCIENTIFIC REPORTS, 2018, 8
  • [43] SCHRAMM-LOEWNER EVOLUTION IN THE RANDOM SCATTERER HENON-PERCOLATION LANDSCAPES
    Najafi, M. N.
    Tizdast, S.
    Cheraghalizadeh, J.
    ACTA PHYSICA POLONICA B, 2019, 50 (05): : 929 - 942
  • [44] Paths in the minimally weighted path model are incompatible with Schramm-Loewner evolution
    Norrenbrock, C.
    Melchert, O.
    Hartmann, A. K.
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [45] Multiple backward Schramm-Loewner evolution and coupling with Gaussian free field
    Koshida, Shinji
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (02)
  • [46] Numerical study on Schramm-Loewner evolution in nonminimal conformal field theories
    Picco, Marco
    Santachiara, Raoul
    PHYSICAL REVIEW LETTERS, 2008, 100 (01)
  • [47] Schramm-Loewner evolution and perimeter of percolation clusters of correlated random landscapes
    C. P. de Castro
    M. Luković
    G. Pompanin
    R. F. S. Andrade
    H. J. Herrmann
    Scientific Reports, 8
  • [48] Large deviations of Schramm-Loewner evolutions: A survey
    Wang, Yilin
    PROBABILITY SURVEYS, 2022, 19 : 351 - 403
  • [49] Conformal welding problem, flow line problem, and multiple Schramm-Loewner evolution
    Katori, Makoto
    Koshida, Shinji
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (08)
  • [50] Domain walls and Schramm-Loewner evolution in the random-field Ising model
    Stevenson, J. D.
    Weigel, M.
    EPL, 2011, 95 (04)