Left passage probability of Schramm-Loewner Evolution

被引:12
|
作者
Najafi, M. N. [1 ]
机构
[1] Univ Mohaghegh Ardabili, Dept Phys, Ardebil, Iran
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 06期
关键词
ERASED RANDOM-WALKS; CONFORMAL-INVARIANCE; SLE;
D O I
10.1103/PhysRevE.87.062105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
SLE(kappa,(rho) over right arrow) is a variant of Schramm-Loewner Evolution (SLE) which describes the curves which are not conformal invariant, but are self-similar due to the presence of some other preferred points on the boundary. In this paper we study the left passage probability (LPP) of SLE(kappa,(rho) over right arrow) through field theoretical framework and find the differential equation governing this probability. This equation is numerically solved for the special case kappa = 2 and h(rho) = 0 in which h(rho) is the conformal weight of the boundary changing (bcc) operator. It may be referred to loop erased random walk (LERW) and Abelian sandpile model (ASM) with a sink on its boundary. For the curve which starts from xi(0) and conditioned by a change of boundary conditions at x(0), we find that this probability depends significantly on the factor x(0) -xi(0). We also present the perturbative general solution for large x(0). As a prototype, we apply this formalism to SLE(kappa,kappa - 6) which governs the curves that start from and end on the real axis.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Oded Schramm and the Schramm-Loewner evolution: In memoriam
    Bharali, Gautam
    Ramadas, T. R.
    CURRENT SCIENCE, 2009, 96 (02): : 297 - 298
  • [2] Numerical Computations for the Schramm-Loewner Evolution
    Tom Kennedy
    Journal of Statistical Physics, 2009, 137 : 839 - 856
  • [3] Watersheds are Schramm-Loewner Evolution Curves
    Daryaei, E.
    Araujo, N. A. M.
    Schrenk, K. J.
    Rouhani, S.
    Herrmann, H. J.
    PHYSICAL REVIEW LETTERS, 2012, 109 (21)
  • [4] Scaling limits and the Schramm-Loewner evolution
    Lawler, Gregory F.
    PROBABILITY SURVEYS, 2011, 8 : 442 - 495
  • [5] A NATURAL PARAMETRIZATION FOR THE SCHRAMM-LOEWNER EVOLUTION
    Lawler, Gregory F.
    Sheffield, Scott
    ANNALS OF PROBABILITY, 2011, 39 (05): : 1896 - 1937
  • [6] Coastlines violate the Schramm-Loewner Evolution
    Abril, Leidy M. L.
    Oliveira, Erneson A.
    Moreira, Andre A.
    Andrade Jr, Jose S.
    Herrmann, Hans J.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 653
  • [7] First-passage-time processes and subordinated Schramm-Loewner evolution
    Nezhadhaghighi, M. Ghasemi
    Rajabpour, M. A.
    Rouhani, S.
    PHYSICAL REVIEW E, 2011, 84 (01)
  • [9] Shortest path and Schramm-Loewner Evolution
    N. Posé
    K. J. Schrenk
    N. A. M. Araújo
    H. J. Herrmann
    Scientific Reports, 4
  • [10] Shortest path and Schramm-Loewner Evolution
    Pose, N.
    Schrenk, K. J.
    Araujo, N. A. M.
    Herrmann, H. J.
    SCIENTIFIC REPORTS, 2014, 4