K-harmonic Means Data Clustering with Particle Swarm Optimization

被引:0
|
作者
Lu, Kezhong [1 ]
Xu, Wenbo [2 ]
Xie, Guangqian [3 ]
机构
[1] Chizhou Coll, Dept Comp Sci, Chizhou 247100, Peoples R China
[2] Southern Yangtze Univ, Sch Informat Technol, Wuxi 214122, Peoples R China
[3] Changzhou Inst Technol, Sch Comp Informat & Engn, Changzhou 213002, Peoples R China
关键词
Clustering; K-Harmonic Means; Particle Swarm Optimization; Hybrid Clustering Algorithm;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Unlike K-means, the K-Harmonic means (KHM) is less sensitive to initial conditions. However, KHM as a center-based clustering algorithm can only generate a local optimal solution. In this paper, we develop a new hybrid clustering algorithm combining Particle Swarm Optimization and K-Harmonic Means (HPSO) for solving this problem. This algorithm has been implemented and tested on several real datasets. The performance of this algorithm is compared with KHM and PSO. Our computational simulations reveal the HPSO clustering algorithm combines the ability of global searching of the PSO algorithm and the fast convergence and less sensitive to initial conditions of the KHM algorithm. The HPSO is a robust clustering algorithm.
引用
收藏
页码:339 / +
页数:3
相关论文
共 50 条
  • [41] Hybrid K-Means and Improved Self-Adaptive Particle Swarm Optimization for Data Clustering
    Pacifico, Luciano D. S.
    Ludermir, Teresa B.
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [42] Integrating Fuzzy K-Means, Particle Swarm Optimization, and Imperialist Competitive Algorithm for Data Clustering
    Hojjat Emami
    Farnaz Derakhshan
    Arabian Journal for Science and Engineering, 2015, 40 : 3545 - 3554
  • [43] Integrating Fuzzy K-Means, Particle Swarm Optimization, and Imperialist Competitive Algorithm for Data Clustering
    Emami, Hojjat
    Derakhshan, Farnaz
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2015, 40 (12) : 3545 - 3554
  • [44] A New Algorithm for Clustering Based on Particle Swarm Optimization and K-means
    Dong, Jinxin
    Qi, Minyong
    2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL IV, PROCEEDINGS, 2009, : 264 - 268
  • [45] A stochastic disturbance of particle swarm optimization for K-means clustering method
    Chen, Jun-yan
    COMPUTATIONAL MATERIALS SCIENCE, PTS 1-3, 2011, 268-270 : 10 - 15
  • [46] K-Means Clustering Algorithm Optimized by Particle Swarm Optimization Algorithm
    Chai, Yi
    Ma, Hao
    Zhang, Ke
    Qian, Kun
    INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND AUTOMATION (ICCEA 2014), 2014, : 852 - 857
  • [47] A Particle Swarm Optimization K-Means Algorithm for Mongolian Elements Clustering
    Hua, Chun
    Wei, Wu
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 1559 - 1564
  • [48] Applying K-harmonic means clustering to the part-machine classification problem
    Uenler, Alper
    Guengoer, Zuelal
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) : 1179 - 1194
  • [49] On the Unification of k-Harmonic Means and Fuzzy c-Means Clustering Problems under Kernelization
    Gupta, Avisek
    Das, Swagatam
    2017 NINTH INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION (ICAPR), 2017, : 386 - 391
  • [50] K-harmonic means clustering algorithm using feature weighting for color image segmentation
    Zhou, Zhiping
    Zhao, Xiaoxiao
    Zhu, Shuwei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (12) : 15139 - 15160