A Particle Swarm Optimization K-Means Algorithm for Mongolian Elements Clustering

被引:0
|
作者
Hua, Chun [1 ,2 ]
Wei, Wu [3 ]
机构
[1] Dalian Univ Technol, Dalian 116024, Peoples R China
[2] Inner Mongolia Univ Nationalities, Coll Comp Sci & Technol, Tongliao 028043, Peoples R China
[3] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
关键词
K-Means; particle swarm optimization; mongolian syllables; GENETIC ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Text clustering is an important research area of clustering technique. Clustering analysis groups the text according to similar characteristics, so the text in the same clusters have the greatest similarity, while the text in different clusters have the greatest dissimilarity. In this paper, we proposed a hybrid clustering technique called PSOKM that combined particle swarm optimization algorithm with K-Means. Numerical experiments show that our proposed algorithm outperforms than existing others.
引用
收藏
页码:1559 / 1564
页数:6
相关论文
共 50 条
  • [1] K-Means Clustering Algorithm Optimized by Particle Swarm Optimization Algorithm
    Chai, Yi
    Ma, Hao
    Zhang, Ke
    Qian, Kun
    [J]. INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND AUTOMATION (ICCEA 2014), 2014, : 852 - 857
  • [2] A New Algorithm for Clustering Based on Particle Swarm Optimization and K-means
    Dong, Jinxin
    Qi, Minyong
    [J]. 2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL IV, PROCEEDINGS, 2009, : 264 - 268
  • [3] An Immune Genetic K-Means Algorithm for Mongolian Elements Clustering
    Hua, Chun
    Cheng, Chun Ying
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2018, 2018, 10878 : 273 - 278
  • [4] K-means Clustering Based on Improved Quantum Particle Swarm Optimization Algorithm
    Bai, Lili
    Song, Zerui
    Bao, Haijie
    Jiang, Jingqing
    [J]. 2021 13TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2021, : 140 - 145
  • [5] Dynamic particle swarm optimization and K-means clustering algorithm for image segmentation
    Li, Haiyang
    He, Hongzhou
    Wen, Yongge
    [J]. OPTIK, 2015, 126 (24): : 4817 - 4822
  • [6] Microarray data clustering using particle swarm optimization K-means algorithm
    Deng, YP
    Kayarat, D
    Elasri, MO
    Brown, SJ
    [J]. PROCEEDINGS OF THE 8TH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1-3, 2005, : 1730 - 1734
  • [7] K-means algorithm based on particle swarm optimization for web document clustering
    Xiao, L. Z.
    Shao, Z. Q.
    Gu, X. M.
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 980 - 984
  • [8] Improved Particle Swarm Optimization based K-Means Clustering
    Prabha, K. Arun
    Visalakshi, N. Karthikayini
    [J]. 2014 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING APPLICATIONS (ICICA 2014), 2014, : 59 - 63
  • [9] Customer Segmentation Using K-Means Clustering and the Hybrid Particle Swarm Optimization Algorithm
    Li, Yue
    Qi, Jianfang
    Chu, Xiaoquan
    Mu, Weisong
    [J]. Computer Journal, 2023, 66 (04): : 941 - 962
  • [10] Improving Arabic Document Clustering using K-Means Algorithm and Particle Swarm Optimization
    Daoud, Abdullah S.
    Sallam, Ahmed
    Wheed, Mohamed E.
    [J]. PROCEEDINGS OF THE 2017 INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), 2017, : 879 - 885