Intensity estimation of non-homogeneous Poisson processes from shifted trajectories

被引:12
|
作者
Bigot, Jeremie [1 ]
机构
[1] DMIA ISAE, F-31055 Toulouse 4, France
来源
关键词
Poisson processes; random shifts; intensity estimation; deconvolution; Meyer wavelets; adaptive estimation; Besov space; minimax rate; WAVELET SHRINKAGE; ADAPTIVE ESTIMATION; INVERSE PROBLEMS; DECONVOLUTION;
D O I
10.1214/13-EJS794
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the problem of estimating nonparametrically a mean pattern intensity lambda from the observation of n independent and non-homogeneous Poisson processes N-1, ... , N-n on the interval [0, 1]. This problem arises when data (counts) are collected independently from n individuals according to similar Poisson processes. We show that estimating this intensity is a deconvolution problem for which the density of the random shifts plays the role of the convolution operator. In an asymptotic setting where the number n of observed trajectories tends to infinity, we derive upper and lower bounds for the minimax quadratic risk over Besov balls. Non-linear thresholding in a Meyer wavelet basis is used to derive an adaptive estimator of the intensity. The proposed estimator is shown to achieve a near-minimax rate of convergence. This rate depends both on the smoothness of the intensity function and the density of the random shifts, which makes a connection between the classical deconvolution problem in nonparametric statistics and the estimation of a mean intensity from the observations of independent Poisson processes.
引用
收藏
页码:881 / 931
页数:51
相关论文
共 50 条
  • [21] Non-homogeneous Poisson and renewal processes as spatial models for cancer mutation
    Miao, Hengyuan
    Kuruoglu, Ercan Engin
    Xu, Tao
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2023, 106
  • [22] Modeling environmental noise exceedances using non-homogeneous Poisson processes
    Guarnaccia, Claudio
    Quartieri, Joseph
    Barrios, Juan M.
    Rodrigues, Eliane R.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2014, 136 (04): : 1631 - 1639
  • [23] RENEWAL AGING IN NON-HOMOGENEOUS POISSON PROCESSES WITH PERIODIC RATE MODULATION
    Paradisi, Paolo
    Grigolini, Paolo
    Bianco, Simone
    Akin, Osman C.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (09): : 2681 - 2691
  • [24] Bayesian modeling and decision theory for non-homogeneous Poisson point processes
    Chen, Jiaxun
    Micheas, Athanasios C.
    Holan, Scott H.
    SPATIAL STATISTICS, 2020, 36
  • [25] The fractional non-homogeneous Poisson process
    Leonenko, Nikolai
    Scalas, Enrico
    Trinh, Mailan
    STATISTICS & PROBABILITY LETTERS, 2017, 120 : 147 - 156
  • [26] LIMIT THEOREMS FOR SUBCRITICAL MARKOV BRANCHING PROCESSES WITH NON-HOMOGENEOUS POISSON IMMIGRATION
    Hyrien, Ollivier
    Mitov, Kosto V.
    Yanev, Nikolay M.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2015, 68 (03): : 313 - 320
  • [27] Block modelling in dynamic networks with non-homogeneous Poisson processes and exact ICL
    Corneli M.
    Latouche P.
    Rossi F.
    Social Network Analysis and Mining, 2016, 6 (1)
  • [28] LIMIT THEOREMS FOR SUPERCRITICAL MARKOV BRANCHING PROCESSES WITH NON-HOMOGENEOUS POISSON IMMIGRATION
    Hyrien, Ollivier
    Mitov, Kosto V.
    Yanev, Nikolay M.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2013, 66 (04): : 485 - 492
  • [29] Strong convergence of a class of non-homogeneous Markov arrival processes to a Poisson process
    Ledoux, James
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (04) : 445 - 455
  • [30] An elementary proof for dynamical scaling for certain fractional non-homogeneous Poisson processes
    Kreer, Markus
    STATISTICS & PROBABILITY LETTERS, 2022, 182