An uncertainty inequality for finite abelian groups

被引:19
|
作者
Meshulam, R [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
Finite abelian groups; Fourier transform; Uncertainty inequality;
D O I
10.1016/j.ejc.2004.07.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite abelian group of order n. For a complex valued function f on G let (f) over cap denote the Fourier transform of f. The classical uncertainty inequality asserts that if f not equal 0 then vertical bar supp(f)vertical bar center dot vertical bar supp((f) over cap)vertical bar >= vertical bar G vertical bar. (1) Answering a question of Terence Tao, the following improvement of (1) is shown: Theorem. Let d(1) < d(2) be two consecutive divisors of n. If d(1) <= k = vertical bar supp(f)vertical bar <= d(2) then vertical bar supp((f) over cap)vertical bar >= (d1d2)/(n)(d(1) + d(2) - k). (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:63 / 67
页数:5
相关论文
共 50 条
  • [1] Equality cases for the uncertainty principle in finite Abelian groups
    Bonami, Aline
    Ghobber, Saif Allah
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 2013, 79 (3-4): : 507 - 528
  • [2] Equality cases for the uncertainty principle in finite Abelian groups
    Aline Bonami
    SaifAllah Ghobber
    [J]. Acta Scientiarum Mathematicarum, 2013, 79 (3-4): : 507 - 528
  • [3] Uncertainty in time-frequency representations on finite Abelian groups and applications
    Krahmer, Felix
    Pfander, Goetz E.
    Rashkov, Peter
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2008, 25 (02) : 209 - 225
  • [4] ON FINITE ABELIAN GROUPS
    HOARE, AHM
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (01): : 40 - &
  • [5] The finite Abelian groups
    Chatelet, A
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1922, 175 : 85 - 87
  • [6] A NOTE ON FINITE ABELIAN GROUPS
    PAIGE, LJ
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (01) : 49 - 49
  • [7] Decomposing finite Abelian groups
    Cheung, Kevin K. H.
    Mosca, Michele
    [J]. Quantum Information and Computation, 2001, 1 (03): : 26 - 32
  • [8] ISOMORPHISM OF FINITE ABELIAN GROUPS
    MCHAFFEY, R
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (01): : 48 - &
  • [9] The reconstructibility of finite abelian groups
    Pebody, L
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2004, 13 (06): : 867 - 892
  • [10] On Schurity of Finite Abelian Groups
    Evdokimov, Sergei
    Kovacs, Istvan
    Ponomarenko, Ilya
    [J]. COMMUNICATIONS IN ALGEBRA, 2016, 44 (01) : 101 - 117