Highest numbers of points of hypersurfaces over finite fields and generalized Reed-Muller codes

被引:10
|
作者
Rodier, Francois [1 ]
Sboui, Adnen [1 ]
机构
[1] CNRS, Inst Math Luminy, Marseille 9, France
关键词
hypersurfaces Reed-Muller codes; weights; hyperplane arrangements;
D O I
10.1016/j.ffa.2008.02.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The weight distribution of the generalized Reed-Muller codes over the finite field F,, is linked to the number of points of some hypersurfaces of degree d in the n-dimensional space over the same field. For d <= q/3 + 2, the three first highest numbers of points of hypersurfaces of degree d in the n-dimensional projective space over the finite field F-q are given only by some hyperplane arrangements. We show that for q/2 + 5/2 <= d < q, this is no longer the case: the third highest number associated to some hyperplane arrangements can also be obtained in this case by some hypersurface, containing an irreducible quadric. For the curves on FP with p a prime number we show that this condition is the best possible. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:816 / 822
页数:7
相关论文
共 50 条
  • [41] Quaternary Reed-Muller codes
    Borges, J
    Fernández, C
    Phelps, KT
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (07) : 2686 - 2691
  • [42] Decoding reed-muller codes over product sets
    Kim J.Y.
    Kopparty S.
    Theory of Computing, 2017, 13 : 1 - 38
  • [43] Reed-Muller Codes Polarize
    Abbe, Emmanuel
    Ye, Min
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (12) : 7311 - 7332
  • [44] ON A CONJECTURE ON REED-MULLER CODES
    WASAN, SK
    GAMES, RA
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1984, 56 (02) : 269 - 271
  • [45] A NOTE ON REED-MULLER CODES
    DASS, BK
    MUTTOO, SK
    DISCRETE APPLIED MATHEMATICS, 1980, 2 (04) : 345 - 348
  • [46] Reed-Muller codes polarize
    Abbe, Emmanuel
    Ye, Min
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 273 - 286
  • [47] PROJECTIVE REED-MULLER CODES
    SORENSEN, AB
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (06) : 1567 - 1576
  • [48] Symmetric Reed-Muller Codes
    Yan, Wei
    Lin, Sian-Jheng
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (07) : 3937 - 3947
  • [49] Quantum Reed-Muller codes
    Steane, AM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (05) : 1701 - 1703
  • [50] Skew Reed-Muller codes
    Geiselmann, Willi
    Ulmer, Felix
    RINGS, MODULES AND CODES, 2019, 727 : 107 - 116