Highest numbers of points of hypersurfaces over finite fields and generalized Reed-Muller codes

被引:10
|
作者
Rodier, Francois [1 ]
Sboui, Adnen [1 ]
机构
[1] CNRS, Inst Math Luminy, Marseille 9, France
关键词
hypersurfaces Reed-Muller codes; weights; hyperplane arrangements;
D O I
10.1016/j.ffa.2008.02.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The weight distribution of the generalized Reed-Muller codes over the finite field F,, is linked to the number of points of some hypersurfaces of degree d in the n-dimensional space over the same field. For d <= q/3 + 2, the three first highest numbers of points of hypersurfaces of degree d in the n-dimensional projective space over the finite field F-q are given only by some hyperplane arrangements. We show that for q/2 + 5/2 <= d < q, this is no longer the case: the third highest number associated to some hyperplane arrangements can also be obtained in this case by some hypersurface, containing an irreducible quadric. For the curves on FP with p a prime number we show that this condition is the best possible. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:816 / 822
页数:7
相关论文
共 50 条
  • [21] Cyclic subcodes of generalized Reed-Muller codes
    Moreno, O
    Duursma, IM
    Cherdieu, JP
    Edouard, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) : 307 - 311
  • [22] List-Decoding Reed-Muller Codes over Small Fields
    Gopalan, Parikshit
    Klivans, Adam R.
    Zuckerman, David
    STOC'08: PROCEEDINGS OF THE 2008 ACM INTERNATIONAL SYMPOSIUM ON THEORY OF COMPUTING, 2008, : 265 - +
  • [23] On the fourth weight of generalized Reed-Muller codes
    Golalizadeh, Somayyeh
    Soltankhah, Nasrin
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (12) : 3857 - 3879
  • [24] On the third weight of generalized Reed-Muller codes
    Leducq, Elodie
    DISCRETE MATHEMATICS, 2015, 338 (08) : 1515 - 1535
  • [25] The List Decoding Radius of Reed-Muller Codes over Small Fields
    Bhowmick, Abhishek
    Lovett, Shachar
    STOC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2015, : 277 - 285
  • [26] The List Decoding Radius for Reed-Muller Codes Over Small Fields
    Bhowmick, Abhishek
    Lovett, Shachar
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (06) : 4382 - 4391
  • [27] Reed-Muller Codes
    Abbe, Emmanuel
    Sberlo, Ori
    Shpilka, Amir
    Ye, Min
    FOUNDATIONS AND TRENDS IN COMMUNICATIONS AND INFORMATION THEORY, 2023, 20 (1-2): : 1 - 156
  • [28] ON THE REED-MULLER CODES
    ASSMUS, EF
    DISCRETE MATHEMATICS, 1992, 106 : 25 - 33
  • [29] Perfect mixed codes from generalized Reed-Muller codes
    Romanov, Alexander M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (06) : 1747 - 1759
  • [30] Second weight codewords of generalized Reed-Muller codes
    Elodie Leducq
    Cryptography and Communications, 2013, 5 : 241 - 276