Highest numbers of points of hypersurfaces over finite fields and generalized Reed-Muller codes

被引:10
|
作者
Rodier, Francois [1 ]
Sboui, Adnen [1 ]
机构
[1] CNRS, Inst Math Luminy, Marseille 9, France
关键词
hypersurfaces Reed-Muller codes; weights; hyperplane arrangements;
D O I
10.1016/j.ffa.2008.02.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The weight distribution of the generalized Reed-Muller codes over the finite field F,, is linked to the number of points of some hypersurfaces of degree d in the n-dimensional space over the same field. For d <= q/3 + 2, the three first highest numbers of points of hypersurfaces of degree d in the n-dimensional projective space over the finite field F-q are given only by some hyperplane arrangements. We show that for q/2 + 5/2 <= d < q, this is no longer the case: the third highest number associated to some hyperplane arrangements can also be obtained in this case by some hypersurface, containing an irreducible quadric. For the curves on FP with p a prime number we show that this condition is the best possible. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:816 / 822
页数:7
相关论文
共 50 条
  • [1] BOUNDS ON THE NUMBER OF RATIONAL POINTS OF ALGEBRAIC HYPERSURFACES OVER FINITE FIELDS, WITH APPLICATIONS TO PROJECTIVE REED-MULLER CODES
    Bartoli, Daniele
    Sboui, Adnen
    Storme, Leo
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (02) : 355 - 365
  • [2] On Perfect and Reed-Muller Codes over Finite Fields
    Romanov, A. M.
    PROBLEMS OF INFORMATION TRANSMISSION, 2021, 57 (03) : 199 - 211
  • [3] Projective generalized Reed-Muller codes over p-adic numbers and finite rings
    Abdukhalikov, K
    FINITE FIELDS AND APPLICATIONS, 2001, : 1 - 13
  • [4] Generalized Reed-Muller codes over Zq
    Bhaintwal, Maheshanand
    Wasan, Siri Krishan
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 54 (02) : 149 - 166
  • [5] Generalized Reed-Muller codes and curves with many points
    van der Geer, G
    van der Vlugt, M
    JOURNAL OF NUMBER THEORY, 1998, 72 (02) : 257 - 268
  • [6] Reed-Muller type codes on the Veronese variety over finite fields
    Rentería, C
    Tapia-Recillas, H
    CODING THEORY, CRYPTOGRAPHY AND RELATED AREAS, 2000, : 237 - 243
  • [7] GENERALIZED REED-MULLER CODES
    KASAMI, T
    LIN, S
    PETERSON, WW
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1968, 51 (03): : 96 - &
  • [8] GENERALIZED REED-MULLER CODES
    WEISS, E
    INFORMATION AND CONTROL, 1962, 5 (03): : 213 - &
  • [9] Syndrome decoding of Reed-Muller codes and tensor decomposition over finite fields
    Kopparty, Swastik
    Potukuchi, Aditya
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 680 - 691
  • [10] Holes in Generalized Reed-Muller Codes
    Lovett, Shachar
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (06) : 2583 - 2586